

Контроллер программируемый логический Элсима

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

Страниц 182

январь 2017

СОДЕРЖАНИЕ

СПИСОК ТЕРМИНОВ И СОКРАЩЕНИЙ	6
ИНФОРМАЦИЯ О ДОКУМЕНТЕ	
УКАЗАНИЕ МЕР БЕЗОПАСНОСТИ	9
1 ХАРАКТЕРИСТИКИ И УСТРОЙСТВО КОНТРОЛЛЕРА	
1.1 Назначение	
1.2 ПАРАМЕТРЫ ЭЛЕКТРОМАГНИТНОЙ СОВМЕСТИМОСТИ	
1.3 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ КОНТРОЛЛЕРА	
1.4 Аппаратный состав	
1.5 УСЛОВНОЕ НАИМЕНОВАНИЕ И МАРКИРОВКА	
1.6 УСТАНОВОЧНЫЕ РАЗМЕРЫ И МОНТАЖ КОНТРОЛЛЕРА	
1.7 Общая конструкция контроллера	
1.8 Монтаж внешних подключений	
1.8.1 Общие требования к монтажным проводникам и их подключение	
1.8.2 Пооключение питания	
1.8.5 Пооключение соеоинителей оискретных вхооов и оискретного выхоой	
1.0.4 у стиновки SIM-кирты 1.8.5 Испольгование GSM/GPRS-модема	
1.8.6 Vстановка microSD-капты	23
1.8.8 9 Становка тегор карто 1.8.7 Подключение к USB2-порту	23
1.8.8 Подключение к релейным выходам	
1.8.9 Подключение интерфейсов RS-485	
1.8.10 Подключение к портам LAN1 и LAN2	
1.8.11 Подключение к порту USB2	
1.8.12 Подключение к соединителям аналогового выхода	
1.8.13 Подключение к соединителям аналоговых входов	
1.9 Выбор режима работы	
1.9.1 Выбор режима работы WatchDog-таймера	
1.9.2 Выбор режима работы (исполнения/программирования)	
1.9.3 Перевод в режим настройки сетевых параметров	
1.9.4 Выоор режима старта проекта	
2 ИСПОЛЬЗОВАНИЕ КОНТРОЛЛЕРА	
2.1 УСЛОВИЯ ЭКСПЛУАТАЦИИ	
2.2 ИНСТРУМЕНТЫ И ПО ДЛЯ РАБОТЫ	
2.5 ОБЩИИ ПОРЯДОК РАБОТЫ С КОНТРОЛЛЕРОМ	
2.5 Установка и полключение	
2.6 Установка программного обеспечения	31
2.6.1 Общие сведения о системе программирования	
2.6.2 Установка CoDeSys и пакета поддержки контроллера	
2.7 Создание проекта	
2.7.1 Создание конфигурации	
2.7.2 Написание кода управляющей программы	
2.8 НАСТРОЙКА СОЕДИНЕНИЯ С КОНТРОЛЛЕРОМ	
2.9 ЗАГРУЗКА ПРОЕКТА В КОНТРОЛЛЕР И ОТЛАДКА	
2.9.1 Компиляция проекта	
2.9.2 Выбор активного контроллера	
2.9.3 Пооключение и загрузка проекта	
2.9.4 Запуск и отлаока проекта	
эконфиі у рирование контроллера	
3.1 ДОБАВЛЕНИЕ МОДУЛЯ В ДЕРЕВО КОНФИГУРАЦИИ	
 3.2 ПАСТРОИКА ПАРАМЕТРОВ КОНТРОЛЛЕРА 2.3 ПРОГРАМАНИ И МОЛУНИ МОРРИС. ТОР. М. СТРР. 	
3.3 ПРОГРАММНЫЙ МОДУЛЬ MODBUS TCP MASTER	
5.5.1 Общии принцип конфисурирования Moudus ICI Musiel	

3.3.2 Модуль Server для МВТСРМ	59
3.3.3 Рекомендации по работе с модулем МВТСРМ	67
3.4 ПРОГРАММНЫЙ МОДУЛЬ MODBUS TCP SLAVE	69
3.4.1 Настройка конфигурационных параметров модуля Slave	71
3.4.2 Конфигурирование передачи данных по Modbus TCP Slave	72
3.4.3 Настройка статистических и диагностических параметров и соотнесение сигналов	78
3.4.4 Рекомендации по работе с модулем MBTCPS	78
3.5 ПРОГРАММНЫЙ МОДУЛЬ MODBUS RTU MASTER	79
3.5.1 Общий принцип конфигурирования Modbus RTU Master	79
3.5.2 Настройка модуля MBMRTU	79
3.5.3 Модуль MBMRTUServer (Slave) (для Modbus RTU Master)	81
3.5.4 Настройка конфигурационных параметров модуля MBMRTUServer (Slave)	82
3.5.5 Конфигурирование базы сигналов протокола Modbus RTU для ведомого устройства	82
3.5.6 Настройка статистических и диагностических параметров и соотнесение сигналов	88
3.5.7 Рекомендации по работе с модулем MBMRTU	88
3.6 ПРОГРАММНЫЙ МОДУЛЬ МОДВИЗ RTU SLAVE	90
3.6.1 Общий принцип конфигурирования Modbus RTU Slave	90
3.6.2 Настройка модуля MBRTUS	90
3.6.3 Модуль Server	92
3.6.4 Настройка конфигурационных параметров модуля Server	92
3.6.5 Конфигурирование карты опроса по протоколу Modbus RTU	93
3.6.6 Настройка статистических и диагностических параметров и соотнесение сигналов	97
3.6.7 Рекомендации по работе с модулем MBRTUS	97
3.7 ПРОГРАММНЫЙ МОДУЛЬ ОПРОСА СЧЕТЧИКОВ ЭЛЕКТРОЭНЕРГИИ СЭТ4ТМ03М И ПСЧ-4ТМ.05 МК (МД)	98
3.7.1 Общий принцип конфигурирования модуля опроса счетчиков	99
3.7.2 Настройка модуля ElMicronMst	99
3.7.3 Модули SET4TM и PSH4TM	100
3.7.4 Настройка конфигурационных параметров модулей SET4TM и PSH4TM	101
3.7.5 Конфигурирование базы сигналов модулей SET4TM и PSH4TM	101
3.7.6 Настройка статистических и диагностических параметров и соотнесение сигналов	110
3.8 РАБОТА СО СЧЕТЧИКАМИ ЭЛЕКТРОЭНЕРГИИ ЭНЕРГОМЕРА СЕЗ01/302/303/304	111
3.8.1 Конфигурирование ФБ СЕЗОЗ	111
3.8.2 Инициализация ФБ CE30X	112
3.8.3 Выполнение транзакции ФБ СЕЗОХ	113
3.8.4 Описание работы $\Phi ar{B}$	117
3.9 РАБОТА СО СЧЕТЧИКАМИ ЭЛЕКТРОЭНЕРГИИ МЕРКУРИЙ 230/233/234	118
3.9.1 Конфигурирование ФБ м23х	118
3.9.2 Инициализация ФБ м23х	119
3.9.3 Выполнение транзакции ФБ м2 3X	120
3.9.4 Описание работы ФБ	123
3.10 РАБОТА С МОДУЛЕМ GSM ДЛЯ ПРИЁМА И ПЕРЕДАЧИ SMS СООБЩЕНИЙ	124
3.10.1 Конфигурирование модуля GSM	125
3.11 Интерфейс LAN1	133
3.11.1 Настройка интерфейса Ethernet	134
3.11.2 Настройка параметров Lan1	134
3.11.3 Добавление IP-слота и настройка его параметров	136
3.11.4 Добавление коммуникационного слота CommSlot	137
3.12 НАСТРОЙКА АДРЕСА ШЛЮЗА	138
3.13 НАСТРОЙКА ИНТЕРФЕЙСА RS-485	138
3.13.1 Настройка параметров модуля RS485	138
3.13.2 Связывание интерфейса RS-485 с программным модулем	139
3.14 ПЕРИФЕРИИНЫЕ УСТРОИСТВА	140
2.15 ΓΑΒΟΙΑ C SU-KAPION	1/1
3.16.1 Cupurant ducknamuozo gooda	141 112
3.16.2 Сигналы дискретиного выдой	145 1/5
3.10.2 Сиспилы бискреппосо выбоби	145
3.16.4 Сигналы аналогового вывода	140
4 KOMILJIEKT HOCTABKI	152
5 ТРАНСПОРТИРОВАНИЕ И ОБСЛУЖИВАНИЕ	153

Контроллер программируемый логический Элсима

5.1 Тара и упаковка	153
5.2 ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ	153
5.3 Калибровка	153
5.4 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ	154
5.5 ТЕКУЩИЙ РЕМОНТ	154
6 РЕШЕНИЕ ПРОБЛЕМ	154
ПРИЛОЖЕНИЕ А (СПРАВОЧНОЕ) СХЕМЫ ПОДКЛЮЧЕНИЯ СИГНАЛОВ КОНТРОЛЛЕРА	155
ПРИЛОЖЕНИЕ Б (СПРАВОЧНОЕ) ИЗМЕНЕНИЕ СЕТЕВЫХ ПАРАМЕТРОВ КОНТРОЛЛЕРА	158
ПРИЛОЖЕНИЕ В (СПРАВОЧНОЕ) ПОДДЕРЖИВАЕМЫЕ ТИПЫ ДАННЫХ	160
ПРИЛОЖЕНИЕ Г (СПРАВОЧНОЕ) УСТАНОВКА ДРАЙВЕРА MICROSOFT RNDIS	161
ПРИЛОЖЕНИЕ Д (СПРАВОЧНОЕ) ОПИСАНИЕ ПРИМЕНЕНИЯ ФУНКЦИОНАЛЬНЫХ БЛОКО MAPIN, MAPOUT	B 166
ПРИЛОЖЕНИЕ Е (СПРАВОЧНОЕ) ПРИМЕР ПРИМЕНЕНИЯ ФУНКЦИЙ ФБ СЕЗ0Х	168
ПРИЛОЖЕНИЕ Ж (СПРАВОЧНОЕ) ПРИМЕР ПРИМЕНЕНИЯ ФУНКЦИЙ ФБ М23Х	171
ПРИЛОЖЕНИЕ 3 (СПРАВОЧНОЕ) ПРИМЕР ПРИМЕНЕНИЯ ФУНКЦИЙ ФБ GSM	174
ПРИЛОЖЕНИЕ И (СПРАВОЧНОЕ) ПЕРЕЧЕНЬ ИЗМЕНЕНИЙ ПРОГРАММНОГО ОБЕСПЕЧЕНИ И РЭ НА КОНТРОЛЛЕР ЭЛСИМА	[Я 177

Список терминов и сокращений

AC	_	Alternating Current – Переменный ток;
CoDeSys	_	Система программирования <i>CoDeSys</i> ;
CRC	_	Cyclic redundancy check (контроль с помощью циклического
		избыточного кода) – Алгоритм вычисления контрольной суммы,
		предназначенный для проверки целостности данных;
DMA	_	Direct Memory Access – Прямой доступ к памяти;
DC	_	Direct Current – Постоянный ток;
FAT	_	File Allocation Table – Таблица распределения файлов;
FBD	_	Function Block Diagram – Функциональная блоковая диаграмма;
GMT	_	Greenwich Mean Time – Время по Гринвичу;
GVL	_	Global Variable List – Список глобальных переменных;
IEC	_	International Electrotechnical Commission, См. также МЭК;
LD	_	Ladder Diagram – Релейно-контактная схема;
POU	_	Program Organization Unit – Компонент организации программ,
		программный компонент;
RAM	_	Random Access Memory – Память (запоминающее устройство) с
		произвольной выборкой; оперативное запоминающее устройство.
		См. также ОЗУ;
SMS	_	Short Message Service – Сервис отправки коротких текстовых
		сообщений (3GPP TS 27.005);
ТСР	_	Transmission Control Protocol – Протокол управления передачей
		данных;
TCP/IP	_	Transmission Control Protocol/Internet Protocol – Межсетевой
		протокол управления передачей данных;
WDT	_	Watchdog timer – Программируемый сторожевой таймер;
АТ-команды	_	Modem Hayes command prefix ("for Attention") – Набор команд,
		разработанных компанией Hayes для модема, состоит из серий
		коротких текстовых строк, которые объединяют вместе, чтобы
		сформировать полные команды операций, таких как набор номера,
		начала соединения или изменения параметров подключения;
АЦП	_	Аналого-цифровой преобразователь;
ЗИП	_	Запасные части, инструменты и принадлежности;
ИС	_	Исполняющая система;
Кадр	_	Количество информации, состоящей из переменного числа байт
1		передаваемой/получаемой протоколом за один раз;
"Клиент"	_	Устройство, расположенное в пункте управления и являющееся
("Master")		потребителем данных и осуществляющее сбор данных с КП всей
		системы телемеханики;
Контроллер	_	Контроллер программируемый логический Элсима;
Маппинг	_	Mapping – Процесс назначения переменных сигналам конфигурации
		для дальнейшего осуществления доступа к сигналам из
		управляющей программы <i>CoDeSys</i> ;
Модуль УВВ	_	Модуль удаленного ввода-вывода;
МЭК	_	Международная электротехническая комиссия. См. также IEC;
ОЗУ	_	Оперативное запоминающее устройство; оперативная память.
		См. также RAM;

Оператор сотовой связи	_	Оператор сотовой связи – Организация, обеспечивающая предоставление доступа к услугам сотовой связи через абонентский терминал (GSM-модем, сотовый телефон). Оплата услуг осуществляется путём покупки SIM-карты и пополнения баланса за используемые услуги;
OC	_	Операционная система;
ПК	_	Персональный компьютер;
ПЛК	_	Контроллер программируемый логический;
ПО	_	Программное обеспечение;
Поллинг	_	(англ. polling) Опрос – Метод предоставления доступа к среде для
		обеспечения информационного обмена между ведущим и
		подчинённым устройством путем выдачи периодических запросов к устройствам согласно таблице поллинга; используется одна таблица (очерель), алресованное устройство получает право использования
		канала передачи данных в течение заданного тайм-аутом времени. Таблица поллинга – таблица (список), определяющая порядок
		опроса подчинённых устройств и необходимые параметры запроса;
ПСЧ	-	Счетчик электрической энергии многофункциональный ПСЧ;
PЭ	-	Руководство по эксплуатации;
"Сервер"	-	Устройство, расположенное на контролируемом пункте системы
("Server",		телемеханики, осуществляющее сбор данных с технологического
"Slave")		оборудования и являющееся поставщиком данных в информационную сеть;
СЭТ	_	Счетчик электроэнергии трехфазный;
Управляющая	_	Один или несколько взаимосвязанных программных компонентов,
программа		реализованных на языках программирования IEC 61131-3 и определяющих логику работы контроллера;
ФБ	_	Функциональный Блок – Основной элемент для построения
		программ для контроллера программируемого логического;
ЦАП	_	Цифро-аналоговый преобразователь;
ЦП	_	Центральный процессор;
ЭНП	_	Энергонезависимая память – память, предназначенная для
		долговременного хранения переменных.

Информация о документе

В настоящем руководстве по эксплуатации (РЭ) содержится информация, необходимая пользователю для правильной и безопасной эксплуатации программируемого логического контроллера Элсима (далее – контроллер).

В контроллере и подключаемых цепях содержатся опасные напряжения, в связи с чем при эксплуатации необходимо соблюдение требований безопасности, приведенных в настоящем РЭ. Указания, которые пользователь должен соблюдать для обеспечения собственной безопасности и защиты оборудования от повреждений, выделены по тексту особым образом: **ОСТОРОЖНО!**

Персонал, проводящий работы с контроллером, должен иметь необходимую квалификацию для работы с электронным оборудованием и программным обеспечением, а также с объектами, которыми управляет контроллер.

Алгоритмы работы контроллера с объектом управления обеспечиваются программой, разработанной пользователем. Изготовитель не несет ответственности за ущерб, принесенный вследствие ошибочно составленной пользовательской программы.

Данные, предоставленные в документе, проверены на соответствие аппаратному и программному обеспечению на момент поставки контроллера. В связи с текущим совершенствованием продукции и документации, пользователю целесообразно следить за проводимыми обновлениями через сайт производителя.

Авторские права на настоящий документ принадлежат компании АО "ЭлеСи". Копирование и распространение настоящего документа без письменного разрешения владельца авторских прав запрещено.

Контактная информация:

- почтовый адрес: АО "ЭлеСи", 634021, г. Томск, ул. Алтайская, 161а;
- тел. (3822) 601-000, факс (3822) 601-001;
- официальный сайт компании: <u>www.elesy.ru</u>.

Указание мер безопасности

• Сохранность технических характеристик при эксплуатации и хранении, постоянная готовность контроллера к работе обеспечиваются при строгом соблюдении требований настоящего руководства по эксплуатации и знании принципа работы контроллера. Для исключения выхода контроллера из строя из-за неправильных действий или нарушения условий безопасной работы перед началом работы необходимо внимательно изучить настоящее руководство по эксплуатации.

• Эксплуатация контроллера должна производиться в соответствии с «Правилами технической эксплуатации электроустановок потребителей», "Правил по охране труда при эксплуатации электроустановок" и главой 7.3 ПУЭ.

• Контроллер соответствует требованиям безопасности ГОСТ IEC 60950-1-2014, ГОСТ 12.2.003-91, ГОСТ 12.2.007.0-75, ТР ТС 004/2011.

• По способу защиты от поражения электрическим током контроллер соответствует классу II по ГОСТ IEC 60950-1-2014.

• **ОСТОРОЖНО!** В контроллерах с напряжением питания 220 В (исполнения Элсима-M01-220P и Элсима-M01-220P-GSM) имеются опасные для жизни напряжения!

• Запрещается эксплуатировать контроллер со снятыми или имеющими повреждения корпусными деталями.

• Контроллер не предназначен для использования во взрывоопасной зоне.

• Контроллер удовлетворяет нормам индустриальных радиопомех, установленным для оборудования класса A по ГОСТ 30428-96 и ГОСТ 30805.22-2013, и не должен применяться в жилых, коммерческих и производственных зонах с малым энергопотреблением и подключаться к низковольтным распределительным электрическим сетям.

• Все работы в процессе эксплуатации необходимо проводить с применением мер защиты от статического электричества, не допуская ударов и приложения больших усилий при стыковке разъемов.

• Запрещается эксплуатировать контроллер в помещениях с химически агрессивной средой.

• Все работы в процессе эксплуатации необходимо проводить с применением мер защиты от статического электричества, не допуская ударов и приложения больших усилий при стыковке разъемов.

1 Характеристики и устройство контроллера

1.1 Назначение

Контроллер предназначен для работы в малых системах автоматизации с количеством сигналов ввода-вывода не более *100*.

Алгоритм работы контроллера определяется управляющей программой, разрабатываемой пользователем в соответствии с требованиями к системе управления, создаваемой с использованием контроллера.

Контроллер представляет собой функциональное законченное изделие, имеющее необходимое количество каналов ввода-вывода, конфигурируемых на различные виды входных и выходных сигналов, включая:

• дискретный ввод сигналов различной полярности относительно общего проводника;

• дискретный вывод сигналов типа "Общий коллектор" и "Сухой контакт";

• ввод непрерывных сигналов, представленных напряжением постоянного тока, постоянным током, термопреобразователями и импульсными сигналами;

• вывод непрерывных сигналов, представленных напряжением постоянного тока и постоянным током.

При необходимости, для увеличения количества сигналов, контроллер позволяет подключать модули удаленного ввода-вывода серии Элсима и аналогичные.

Основная область применения – малые системы автоматического и автоматизированного управления технологическими процессами в областях, таких как, управление климатическим оборудованием, управление малыми станками и механизмами, автоматизация котельных, работа в системах "Умный дом" и других отраслях.

Контроллер обеспечивает непрерывный необслуживаемый режим работы в условиях естественной вентиляции.

Сведения о сертификации приводятся на электронном носителе, входящем в комплект поставки изделия.

Метрологические характеристики контроллера устанавливаются в соответствии с ГОСТ 22261-94.

По эксплуатационной законченности контроллер относится к изделиям второго порядка по ГОСТ Р 52931-2008.

1.2 Параметры электромагнитной совместимости

Контроллер удовлетворяет критерию качества функционирования А по требованиям устойчивости к воздействию электромагнитных помех в соответствии с ГОСТ CISPR 24-2013, ГОСТ 30804.6.2-2013 по следующим типам воздействий:

• уровень электростатического разряда в соответствии с ГОСТ 30804.4.2-2013, степень жесткости *1*;

• радиочастотное электромагнитное поле в соответствии с ГОСТ 30804.4.3-2013, степень жесткости 2;

• наносекундные импульсные помехи по цепи электропитания в соответствии с ГОСТ 30804.4.4-2013, степень жесткости *3*;

• микросекундные импульсные помехи большой энергии по цепям электропитания в соответствии с ГОСТ Р 51317.4.5-99, степень жесткости 2;

• динамические изменения напряжения сети электропитания в соответствии ГОСТ 30804.4.11-2013, класс электромагнитной обстановки *3*;

• колебания напряжения питания ГОСТ Р 51317.4.14-2000, класс электромагнитной обстановки *3*.

Контроллер удовлетворяет нормам индустриальных радиопомех класса А по ГОСТ 30428-96 и ГОСТ 30805.22-2013.

1.3 Технические характеристики контроллера

Технические характеристики контроллера указаны в таблице 1.1.

Таблица 1.1 – Контроллер Элсима. Технические характеристики

	Значение	
Наименование параметра	Элсима-M01- ZZZU	Элсима-M01- ZZZU-GSM
Тип процессора	Cortex	ARM8
Частота процессора	300	МГц
Максимальный объем памяти для хранения задачи пользователя	<i>32</i> N	Ібайт
Максимальный объем энергонезависимой памяти (ЭНП), доступной к задаче пользователя	27 K	байт
Скорость выполнения инструкций:		
• Логическая инструкция	0,01	мкс
• Арифметическая операция с целыми числами	0,02	МКС
• Арифметическая операция с числами формата Real	0,03	мкс
Наличие часов реального времени со съемной батареей	ec	СТЬ
Время автономной работы часов реального времени	5	пет
Точность хода часов реального времени (с отключенным	2	-
питанием)	3св	сутки
Наличие четырехпозиционного DIP-переключателя, состояние		
которого считывается программно	ec	СТЬ
Габаритные размеры контроллера, мм, не более	160×116×59	160×116×59 (без учета GSM- антенны)*
Масса, кг, не более	0	,4
Аппаратный WatchDog-тайме	р	
Первый период сброса WatchDog-таймера	70) c
Второй и последующий периоды сброса WatchDog-таймера	от <i>0,9</i> до <i>2,5</i> с	
Возможность аппаратного отключения WatchDog-таймера	есть	
Интерфейсы контроллера		
Количество разъемов для подключения Ethernet 10/100 Mbi	2 1	ШТ.
Напряжение гальванического разделения от цепей модулей, не	1000	B AC
Налиние встроенного GSM-молема	цет	POTL
Колицество раздемов полицонения по интерфейси RS-485 непи	1101	CCTB
А В полключение экрана	1 1	UТ
• Максимальная скорость обмена	1 шт. 115200 бит/с	
• Годи ранишеская разрязка, не менее	750 B AC	
Работа с мотундин унаношного врона ви		b ne
Габота с модулями удаленного ввода-вы Количество одновременно получющенных молулей VBB не более	івода (з DD) Л 1	ΊΓ
Скорость обновления данных с молудей VBB	- т шт. от 20 мс	
Возможность работы в общих сетях Ehernet	есть, по предустановленному	
Лополнительное оборуловани	e	
Разъем USB для полключения внешних устройств в режиме host	<u> </u>	IIT.
Разъем USB для подключения внешних устройств в режиме device	1	IIT.
Тип SD-карты	mici	roSD
Объем microSD-карты	от 2 ло.	32 Гбайт
Количество гальванически развязанных групп	<u>2</u> гр	
Количество дискретных входов	20	
Напряжение логического нуля	от минус 3	до плюс 5 B
Напряжение логической единицы	от 15 г	10 <i>30</i> B
Максимальный ток логической единицы	10	мА

	Значение	
Наименование параметра	Элсима-M01- ZZZU ZZZU-GSM	-
Минимальная детектируемая длительность импульса, не менее	1,5 мс	
Минимальный период следования импульсов	3 мс	
Напряжение гальванического разделения между дискретными		
входами и внутренней шиной контроллера (эффективное	<i>1500</i> B	
значение), не менее		
Дискретные выходы контролле	pa	
Количество дискретных выходов тип "Открытый коллектор" (одна группа)	4 шт.	
Общая гальваническая изоляция от внутренней шины контроллера		
(эффективное значение) выходов типа "Открытый коллектор", не менее	<i>1500</i> B	
Максимальное коммутируемое напряжение для выходов "Открытый коллектор"	<i>30</i> B	
Остаточное напряжение в состоянии "включено" для выходов "Открытый коллектор", не более	<i>1</i> B	
Максимальный коммутируемый ток для выходов "Открытый коллектор"	<i>0,3</i> A	
Количество гальванически разделенных групп дискретных выходов, тип "Реле"	2 группы	
Количество дискретных выходов, тип "Реле", в одной группе	2 шт.	
Максимальное коммутируемое напряжение для релейных выходов	250 B AC	
Максимальный коммутируемый ток для релейных выходов	2 A	
Гальваническая развязка от внутренней шины контроллера	a	
(эффективное значение) групп релейных выходов, не менее	е менее 2000 В	
Примечание – Предусмотрена защита от подачи напряжен	ия обратной полярности и выброс	ОВ
напряжения при коммутации индуктивной нагрузки для выходов ти	па "Открытый коллектор"	
Аналоговые входы		
Количество универсальных аналоговых входов	4 шт.	
Гальваническая развязка от внутренней шины контроллера (эффективное значение) каждого аналогового входа, не менее	<i>750</i> B	
Возможность подключать датчики с сигналами следующих типов:		
• Ток	0-20 мА	
• Напряжение	<i>0-10</i> B	
• Термопары типа:	or yours 250 ro revos 000 %C	
\Box TXA (K)	от минус 250 до плюс 900°С	
$\Box TXK (L)$	от минис 250 но нисс 1000 °C	
□ TXKH (E)	от минус 250 до плюс 1000 °С	
$\Box \text{ TIIII10 (S)}$		
$\Box IHH(N)$	от минус 250 до плюс 1000°С	
$\Box \Pi \Pi P (B)$ $= T \Pi U (D)$		
$\Box I \mathcal{K} K (J)$ $= TDD (A, I)$	от минус 200 до плюс 600 °С	
$\Box TIII 13 (R) \qquad \qquad$		
	от <i>0</i> до плюс <i>1600</i> °С	
• термосопротивления в режиме трехпроводного подключения		
\Box TCM (50M 100M 500M)	от минус 50 ло плюс 150 °C	
\Box TCH (50H, 100H, 500H)	от минус 50 ло плюс 500 °C	
\Box TCH (100H, 100H, 1000H)	от минус 50 ло плюс 150 °C	
Предел основной приведенной погрешности измерения		
аналоговыми входами, не более (при работе с термопарами –	±0.5 %	
только при задании параметра ModeFrec="Disable")	·	

Таблица 1.1 – Контроллер Элсима.	Технические характеристики
----------------------------------	----------------------------

	Значение	
Наименование параметра	Элсима-М01- ZZZU	Элсима-M01- ZZZU-GSM
Минимальное время измерения одного канала для ввода сигналов		
постоянного тока или напряжения постоянного тока, температуры	25	мс
в режиме измерения сигнала термопары		
Минимальное время выполнения одного канала в режиме		
измерения температуры термопреобразователем сопротивления в	200	мс
трехпроводном режиме		
Выходное напряжение встроенного источника питания для	• / •	
подключения датчиков с контролем целостности цепи (для	24,0 ±	: 2,4 B
исполнений по напряжению питания 48 В DC и 220 В AC)		
Выходное напряжение встроенного источника питания для	соответствует зна	ачению входного
подключения датчиков с контролем целостности цепи для	напря	жения
исполнения по напряжению питания 24 В DC		> A
Максимальный ток нагрузки встроенного источника питания	0,3	A
Аналоговые выходы	2	
Количество аналоговых выходов		
Количество групп аналоговых выходов	<i>1</i> 1p	yiiiia
гальваническая развязка группы от внутренней шины контроллера (эффективное значение), не менее	750) B
Каждый аналоговый выход может быть программно		
сконфигурирован для работы в следующих режимах:		
• Ток (с внешним шунтом)	0-20 мА	
• Напряжение	от 0 де	o <i>10</i> B
Предел допускаемой приведенной погрешности формирования	±0,.	5 %
Максимальное нагрузочное сопротивление аналогового выхода (В) не виходи токором оченово	400	Ом
при выходное сигнале " <i>Напражение</i> 0-10 <i>В</i> "	2000 Ом	
при выходном сигнале тнапряжение 0-10 В		
	20 28	BDC
Питание контроллера (в зависимости от исполнения)	36 72	B DC
	9026	4 B AC
Потребляемая мощность (без учета потребления датчиков.		
подключенных к встроенному источнику питания), не более	71	BT

Таблица 1.1 – Контроллер Элсима. Технические характеристики

Примечания

1 ZZZU – исполнение контроллера по напряжению питания и по типу внешних соединителей.

2 * Максимальные габаритные размеры контроллера исполнения Элсима-M01-ZZZU-GSM зависят от положения GSM-антенны

Контроллер предназначен для работы в климатических условиях, указанных в таблице 1.2.

Таблица 1.2 – Контроллер Элсима. Климатические условия эксплуатации контроллера

Наименование параметра	Значение
Диапазон рабочих температур	от <i>0</i> до плюс <i>60</i> °С
Относительная влажность воздуха	от 50 до 95 %
	(при температуре плюс 40 °C)
Атмосферное давление	от <i>84,0</i> до <i>106,7</i> кПа
	(от <i>630</i> до <i>800</i> мм рт. ст.)

Контроллер устойчив к синусоидальной вибрации согласно ГОСТ IEC 61131-2-2012 (с частотой перехода 8,4 Гц) с параметрами, представленными в таблице 1.3.

Таблица 1.3 – Контроллер Элсима. Параметры синусоидальной вибрации

Наименование параметра	Значение
Частота	от 5 до 150 Гц
Максимальное ускорение	<i>1,0</i> g
Максимальное смещение	3,5 мм
Удары с параметрами:	
• амплитуда	до <i>15</i> g
• длительность	11 мс
 форма ударной волны 	полусинусоида

1.4 Аппаратный состав

Контроллер разработан в стандартном пластиковом корпусе (23–66) А, устанавливаемом на DIN-рейку. Набор доступных исполнений контроллера представлен в таблице 1.4.

Таблица 1.4 – Состав и исполнение контроллера

Наименование	Вариант исполнения	Назначение
Элсима-М01	Элсима-M01-24Р Элсима-M01-24P-GSM Элсима-M01-48Р Элсима-M01-48P-GSM Элсима-M01-220Р Элсима-M01-220P-GSM	Контроллер программируемый логический

На рисунке 1.1 представлены варианты построении системы с расширением каналов ввода-вывода контроллера Элсима с помощью модулей УВВ. Существует возможность создания трех схем распределенных систем:

• схема подключения без модулей УВВ – рисунок 1.1, а);

• схема подключения одного модуля УВВ непосредственно к контроллеру – рисунок 1.1, б);

• схема подключения более одного модуля УВВ с использованием коммутатора – рисунок 1.1, в).

Существует возможность подключения не более четырех модулей УВВ. Модули УВВ возможно подключать через общие сети *Ethernet*, при этом не гарантируются временные показатели работы. При работе в выделенной сети адрес модуля УВВ задается переключателем на лицевой панели. При работе в общей сети адрес модуля определяется заданным заранее IP-адресом. Назначение IP-адреса производится при настройке модуля УВВ.

а) без модулей УВВ; б) с одним модулем УВВ; в) несколько модулей УВВ

Рисунок 1.1 – Структурные схемы систем на базе контроллера Элсима и модулей УВВ

1.5 Условное наименование и маркировка

Условное наименование контроллера приведено на рисунке 1.2.

Контроллер программируемый логический Элсима	М	YY	ZZZ	U	XXX
Основное функциональное назначение: М – модификация контроллера					
Порядковый номер разработки					
Напряжение цепей питания: - 24 - 24 В DC; - 48 - 48 В DC; - 220 - 220 В AC					
Тип внешних соединителей Р – разъёмы				_	
Наличие встроенного GSM/GPRS-модема: – нет символа – нет; – GSM – есть		-			

Рисунок 1.2 – Условное наименование контроллера

Доступные исполнения контроллера приведены в таблице 1.4. Примеры наименований:

• Элсима-M01-220P-GSM – контроллер, порядковый номер разработки 01, исполнение для работы от 220 В переменного тока, с разъемными соединителями, имеет встроенный GSM-модем;

• Элсима-М01-24Р – контроллер, порядковый номер разработки 01, исполнение для работы от 24 В постоянного тока, с разъемными соединителями.

Маркировка контроллера соответствует ГОСТ 26828-86 и содержит:

- условное наименование контроллера;
- наименование предприятия-изготовителя и (или) логотип компании;
- знак утверждения типа (для модулей измерения аналоговых сигналов);
- символ "Прибор II класса защиты" в соответствии с ГОСТ 25874-83;
- единый знак обращения продукции на рынке;
- наименование страны-изготовителя;

• матричный код, содержащий заводской номер и дату выпуска изделия, расшифровка матричного кода;

- QR-код;
- сведения о напряжении питания и выходной мощности;

• маркировку переключателей, индикаторов (кроме индикаторов интерфейса *Ethernet*), разъемов;

• условное обозначение наличия встроенного GSM/GPRS-модема;

• предупредительные знаки и надписи при наличии в контроллере факторов, представляющих опасность при эксплуатации и обслуживании.

1.6 Установочные размеры и монтаж контроллера

Контроллер изготавливается в пластмассовом корпусе для крепления на DIN-рейку. Габаритно-установочные размеры контроллера представлены на рисунках 1.3, 1.4.

Рисунок 1.3 – Контроллер. Габаритно-установочный чертеж. Вид спереди

Установка контроллера на DIN-рейку выполняется в следующей последовательности:

1 Контроллер устанавливается на DIN-рейку в соответствии с рисунком 1.4. По стрелкам указывается последовательность действий:

- 1.1 Контроллер с усилием прижать к DIN-рейке в направлении, указанном стрелкой 1.
- 1.2 В отверстие фиксирующей защелки вставить острие отвертки и отжать защелку вниз по стрелке 2.
- 1.3 Убрать отвертку (стрелка 3). При этом происходит фиксация защелки.

Контроллер программируемый логический Элсима

Элемент	Описание			
1	Контроллер			
2	DIN-рейка			
3	Фиксирующая защелка			
4	Кабельная часть			

Рисунок 1.4 – Контроллер. Габаритно-установочный чертеж. Вид сбоку

1.7 Общая конструкция контроллера

На лицевой панели контроллера (рисунок 1.5) расположены:

- Индикаторы состояний контроллера:
 - □ "L1" двухцветный индикатор работы контроллера (красного и зеленого цвета свечения);
 - □ "L2" индикатор состояния контроллера (желтый цвет свечения);
- Кнопка "**R**" "Reset", предназначенная для сброса контроллера.

Рисунок 1.5 – Вид лицевой панели контроллера (антенна GSM/GPRS модема не показана)

На боковой стороне контроллера (далее – "верхняя сторона") расположены следующие элементы:

• "SD" – слот для подключения карт памяти типа microSD;

• "USB2" – порт USB для подключения внешних устройств по протоколу USB в режиме *Slave*;

• "SW" – четырехпозиционный DIP-переключатель "SW". Описание положений переключателя представлено на рисунке 1.16;

- "VOUT" разъемный соединитель выходного питания;
- "VIN" разъемный соединитель входного питания;
- "DIN1" и "DIN2" разъемные соединители дискретных входов 1 и 2;
- "DOUT" разъемный соединитель дискретного выхода;
- "SIM" слот для подключения SIM-карты;
- "GSM" разъем SMA-F для подключения внешней антенны GSM/GPRS-модема.

Контроллер программируемый логический Элсима

Рисунок 1.6 – Контроллер. Вид сбоку

На противоположной боковой стороне контроллера (далее – "нижняя сторона") расположены следующие элементы:

• "RELAY" – разъемный соединитель релейных дискретных выходов;

• "**RS-485**" – разъем соединителей для подключения внешних приборов по интерфейсу *RS-485*;

• "LAN1", "LAN2" – соединитель порта LAN;

• "USB1" – порт USB для подключения внешних устройств по протоколу USB 2.0 в режиме host;

• "AOUT" – разъемный соединитель аналогового выхода;

• "AIN1", "AIN2", "AIN3", "AIN4" – разъемные соединители аналоговых входов.

Рисунок 1.7 – Контроллер. Вид с другой (противоположной) боковой стороны (маркировка контактов показана условно)

1.8 Монтаж внешних подключений

1.8.1 Обшие требования проводникам к монтажным их полключение

Для подключения сигнальных цепей допускается использование гибких изолированных проводников сечением от 0,5 до 1,5 мм².

Для подключения проводников к ответной части разъема следует:

1 Проверить, что все подключаемые к контроллеру цепи обесточены.

2 Подсоединить проводник к ответной части разъема. Для этого:

- 2.1 Зачистить проводник от изоляции на длину 5-6 мм. Для надежного подключения проводник рекомендуется обжать наконечником.
- 2.2 Нажать отверткой на оранжевый пружинный контакт.
- 2.3 Вставить проводник в круглое отверстие колодки. Отпустить отверткой пружину и убрать отвертку. Проверить надежность закрепления провода.

3 Подсоединить ответную часть к вилке.

ОСТОРОЖНО! Не допускается выход оголенных участков проводников над изолятором колодки.

1.8.2 Полключение питания

Разъемы "VOUT" и "VIN" являются соединителями выходного и входного питания контроллера. Назначение контактов, в зависимости от исполнения по напряжению питания, приведено на рисунке 1.8.

Исполнение по напряжению питания +24 В DC					
Контакт		Обозначение на корп.	Цепь		
VOUT	1	+	+24 B		
VUUI	2		GND		
VIN	1	+	+24 B		
V IIN	2		GND		

Примечание – Напряжение питания выводится на разъем VOUT напрямую с разъема VIN, ограничение тока в данном исполнении модуля не предусматривается.

ВНИМАНИЕ! Для исполнения по напряжению питания +24 В DC используйте внешнюю защиту от короткого замыкания! Ток короткого замыкания не должен превышать 4 А!

Исполнение по напряжению питания +48 В DC					
Контакт		Обозначение на корп.	Цепь		
VOUT	1	+	+24 B		
VUUI	2		GND		
VIN	1	+	+48 B		
V 11N	2		GND		
Испо.	тнение по	напряжению пита	ания 220 В АС		
Ко	Контакт Обозначение Цепь Цепь				
VOUT	1	+	+24 B		
VUUI	2		GND		
VIN	1 2	~ ~	~ 220 B		

VOUT

Рисунок 1.8 – Назначение контактов разъемов "VOUT" и "VIN"

ОСТОРОЖНО! Неверное подключение питающего напряжения приводит к выходу контроллера из строя и опасности поражения электрическим током!

1.8.3 Подключение соединителей дискретных входов и дискретного выхода

Назначение контактов разъемов "DIN1", "DIN2", "DOUT" контроллера представлено на рисунке 1.9.

DIN1

DIN2

DOUT

Кон-	Обозна-	Разъем	Кон-	Обозна-	Разъем	Кон-	Обозна-	Разъем
такт	чение на корпусе	DIN1	такт	чение на корпусе	DIN2	такт	чение на корпусе	DOUT
1	1	Вход 1	1	1	Вход 1	1	1	Выход 1
2	2	Вход 2	2	2	Вход 2	2	2	Выход 2
3	3	Вход З	3	3	Вход З	3	3	Выход З
4	4	Вход 4	4	4	Вход 4	4	4	Выход 4
5	5	Вход 5	5	5	Вход 5	5	G	Общий
6	6	Вход б	6	6	Вход б			
7	7	Вход 7	7	7	Вход 7			
8	8	Вход 8	8	8	Вход 8			
9	9	Вход 9	9	9	Вход 9			
10	10	Вход 10	10	10	Вход 10			
11	G	Общий	11	G	Общий			
12	G	Общий	12	G	Общий			

Рисунок 1.9 - Назначение контактов разъемов "DIN1", "DIN2", "DOUT"

1.8.4 Установка SIM-карты

SIM-карта устанавливается в соответствующий слот "SIM" (рисунок 1.6) контактами в сторону DIN-рейки и скошенным углом вниз.

1.8.5 Использование GSM/GPRS-модема

При использовании GSM/GPRS-модема необходима антенна, устанавливаемая в винтовое гнездо контроллера "GSM" (рисунок 1.6) соответствующего исполнения.

1.8.6 Установка microSD-карты

Карта microSD устанавливается контактами в направлении расположения DIN-рейки в соответствующий слот "SD" (рисунок 1.6) до характерного щелчка. Для извлечения необходимо сверху нажать на карту памяти. Описание работы с картой microSD представлено в подразделе 3.15.

1.8.7 Подключение к USB2-порту

"USB2" – порт USB предназначен для подключения контроллера к ПК для работы с системой программирования *CoDeSys*.

1.8.8 Подключение к релейным выходам

Назначение контактов разъемного соединителя релейных дискретных выходов "**RELAY**" представлено на рисунке 1.10.

1	2	3	4	5	6	Lourour	Обозначение	Разъем
4	-				10	KUHTAKI	на корпусе	RELAY
1	2	N1	3	4	N2	1	1	Выход 1
弄			判	FR.		2	2	Выход 2
ð	10	10.	ŏ.	ð	l 🗑 🛛	2	N1	GND
	<u>مال</u>	لكال	الم	ألحما		3	INI	для выходов 1 и 2
_	_		_	_		4	3	Выход 3
		REL	AY			5	4	Выход 4
						6	NO	GND
						0	1N2	для выходов 3 и 4

Рисунок 1.10 – Назначение контактов разъема "RELAY"

1.8.9 Подключение интерфейсов RS-485

Подключение приборов по интерфейсу *RS-485* выполняется коммуникационным кабелем – только экранированной витой парой.

Назначение контактов разъема "RS-485" представлено на рисунке 1.11.

ABC	Контакт	Цепь
72727	Интер	офейс <i>RS-485</i>
®.@.@	1	А
	2	В
RS-485	3	C (GND)

Рисунок 1.11 – Назначение контактов разъема "RS-485"

1.8.9.1 Определение длины кабеля

На рисунке 1.12 представлена функциональная зависимость максимальной скорости передачи от длины кабеля и ограничения на длину кабеля в зависимости от используемой скорости передачи.

Скорость, бит/с	Максимальная длина кабеля, м
от <i>300</i> до <i>57600</i>	1219
115200	1058

Рисунок 1.12 – Зависимость скорости передачи от длины кабеля

Рекомендуемые марки коммуникационного кабеля: МКЭКШВ, КИПЭВ или другие с аналогичными характеристиками.

1.8.10 Подключение к портам LAN1 и LAN2

Назначение и порядок нумерации контактов соединителей портов LAN1 и LAN2 представлено на рисунке 1.13.

Контакт	Разъем		
KUIIIaKI	LAN1	LAN2	
1	Trancei	ve data +	
2	Tranceive data —		
3	Receive data +		
4	Not connected		
5	Not connected		
6	Receive data —		
7	Not connected		
8	Not con	nnected	

Рисунок 1.13 – Назначение контактов портов LAN1 и LAN2

1.8.11 Подключение к порту USB2

Порт USB2 предназначен для подключения внешних устройств по протоколу *USB 2.0* в режиме **host** (в некоторых версиях ПО может не поддерживаться).

1.8.12 Подключение к соединителям аналогового выхода

Назначение контактов разъема "АОUT" контроллера представлено на рисунке 1.14.

	12	3	_
			7
١ċ			
١Ľ	8 7(6	9.Q	
	A0	UT	

Контакт	Обозначение на корпусе	Разъем
1	1	АОUТ Выход 1
2	2	Выход 2
3	G	GND

Рисунок 1.14 – Назначение контактов разъема АОИТ

1.8.13 Подключение к соединителям аналоговых входов

Назначение контактов разъемов "AIN1", "AIN2", "AIN3", "AIN4" контроллера представлено на рисунке 1.15. Схемы подключения приведены в приложении А.

1234 1234 1234 1234

55555	55555	55555

AIN1 AIN2

AIN4

AIN3

Vourour	Разъем	Vourour	Разъем	Vourour	Разъем	Vourour	Разъем
NOHTAKT	AIN1	NOHTAKT	AIN2	контакт	AIN3	NOHTAKT	AIN4
1	''U+'' – вход	1	'' U+'' – вход	1	'' U+'' – вход	1	''U+'' – вход
	по		по		по		по
	напряжению		напряжению		напряжению		напряжению
2	"IO" –	2	"IO" –	2	"IO" –	2	"IO" –
	выход по току		выход по току		выход по току		выход по току
3	''+'' –	3	''+'' –	3	''+'' –	3	''+'' –
	измерение		измерение		измерение		измерение
	(см. схемы		(см. схемы		(см. схемы		(см. схемы
	подключения		подключения		подключения		подключения
	приложения А)		приложения А)		приложения А)		приложения А)
4	''-'' —	4	''-'' —	4	''-'' —	4	''-'' —
	измерение		измерение		измерение		измерение
	(см. схемы		(см. схемы		(см. схемы		(см. схемы

подключения	1	подключения	подключения	подключения
приложения А)	Π	риложения А)	приложения А)	приложения А)

Рисунок 1.15 – Назначение контактов разъемов AIN1-AIN4

1.9 Выбор режима работы

Режим работы контроллера задается с помощью DIP-переключателя SW, расположенного на верхней стороне контроллера (рисунок 1.16).

	Переключатель SW	Состояние переключателя	Режим	
ON	"1"	"ON"	WatchDog-таймер отключен	
	1	"OFF"	WatchDog-таймер включен	
	"2"	"ON"	Режим обслуживания (MAINTENANCE MODE) – "сервисный режим работы"	
		"OFF"	Производственный режим (PRODUCTION MODE) – "рабочий режим"	
	"3"	" ON "	Режим настройки сетевых параметров	
		"OFF"	Старт в штатном режиме	
	"4"	"ON"	Включен режим старта контроллера в безопасном режиме	
	4	"OFF"	Выключен режим старта контроллера в безопасном режиме	

Рисунок 1.16 – Выбор режима работы

1.9.1 Выбор режима работы WatchDog-таймера

WatchDog-таймер предназначен для автоматического формирования сигнала сброса процессора при подаче питания, а также в случае некорректной работы программного обеспечения. Выбор режима работы WatchDog-таймера контроллера производится установкой переключателя **SW** "*I*" в положение "**ON**" – "**OFF**" (рисунок 1.16).

1.9.2 Выбор режима работы (исполнения/программирования)

Программное обеспечение контроллера может работать в двух режимах:

- производственный режим (**PRODUCTION MODE**);
- режим обслуживания (MAINTENANCE MODE).

Выбор режима работы производится переводом переключателя **SW** "2" (рисунок 1.16). Штатным (рабочим) режимом работы считается производственный режим. В данном режиме запрещены следующие действия:

- загрузка приложения;
- обновление приложения;
- остановка приложения;
- тёплый сброс приложения;
- холодный сброс приложения;
- запись переменных.

В производственном режиме разрешены следующие действия:

• подключение к контроллеру;

- старт приложения;
- мониторинг переменных.

При установке переключателя **SW** "2" в положение "**ON**" (рисунок 1.16), контроллер переходит в режим обслуживания (**MAINTENANCE MODE**), в котором разрешены функции, запрещённые в производственном режиме (**PRODUCTION MODE**).

1.9.3 Перевод в режим настройки сетевых параметров

При установке переключателя SW "3" в положение "ON" (рисунок 1.16), контроллер переходит в режим старта с заводскими сетевыми параметрами (значения заводских сетевых параметров см. в приложении Б). В данном режиме не запускается система исполнения пользовательских задач, режим служит только для настройки контроллера. Процесс изменения сетевых параметров приведен в приложении Б.

1.9.4 Выбор режима старта проекта

При отладке пользовательского программного обеспечения возникает необходимость сброса (удаления) созданного проекта (например, при некорректно созданной программе). Для этого существует возможность старта контроллера в "Безопасном" режиме. В данном режиме перед запуском исполняющей системы удаляется ранее созданный проект и производится старт без проекта. Для выбора режима следует установить переключатель **SW** "4" в положение "**ON**" (рисунок 1.16).

1.10 Индикация

Расположение и обозначение индикаторов контроллера приведено в 1.7. Описание состояния индикаторов работы контроллера представлено в таблице 1.5.

Индикатор	Состояние индикатора	Режим работы
"L1"	Красный цвет свечения (непрерывно)	Авария ЦП, проверяется в начальной фазе инициализации системы <i>CoDeSys</i>
	Не светится	
"L1"	Не светится	
"L2"	Желтый цвет свечения (непрерывно)	Инициализация контроллера
"L1"	Мигание зеленым цветом с периодом 1 с	Система <i>CoDeSys</i> запущена, не загружен
"L2"	Не светится	
"L1"	Мигание красным цветом с периодом <i>1</i> с	Система <i>CoDeSys</i> запущена, не загружен проект в контроллер, произошла
"L2"	Не светится	исключительная ситуация
"L1"	Зеленый цвет свечения (непрерывно)	Система <i>CoDeSys</i> запущена, проект загружен в контроллер и прошла стадия обновления конфигурации (Update configuration), проект
"L2"	Не светится	не запущен (в состоянии "Стоп")
"L1"	Зеленый цвет свечения (непрерывно)	Проект в состоянии исполнения
"L2"	Мигание желтым цветом с периодом 1 с	

Таблица 1.5 – Контроллер Элсима. Индикация

Индикатор	Состояние индикатора	Режим работы	
"L1" "L2"	Мигание красным и зеленым цветом поочередно с периодом <i>1</i> с Не светится	Произошла исключительная ситуация после загрузки проекта. В пользовательской задач возможна фатальная ошибка	
"L1" "L2"	Мигание зеленым цветом с периодом 0,5 с десять раз (одновременно с миганием индикатора"L2" желтым цветом) Мигание желтым цветом с периодом 0,5 с десять раз (одновременно с миганием индикатора"L1" зеленым цветом)	Функция идентификации контроллера из системы <i>CoDeSys</i> (функция Wink)	
"L1" "L2"	Зеленый цвет свечения (непрерывно) Желтый цвет свечения (непрерывно)	Работа в режиме настройки сетевых параметров	
"L1" "L2"	Красный и зеленый цвета свечения одновременно (непрерывно) Желтый цвет свечения (непрерывно)	Выход из системы <i>CoDeSys</i> . Данный режим работы возникает только в случае ошибки работы операционной системы, при включенном WDT контроллер будет перезапущен	

Таблица 1.5 – Контроллер Элсима. Индикация

2 ИСПОЛЬЗОВАНИЕ КОНТРОЛЛЕРА

2.1 Условия эксплуатации

Надежная и безопасная работа контроллера обеспечивается при соблюдении следующих ограничений:

• контроллер удовлетворяет нормам индустриальных радиопомех, установленным для оборудования класса A по ГОСТ 30428-96 и ГОСТ 30805.22-2013, и не должен применяться в жилых, коммерческих и производственных зонах с малым энергопотреблением и подключаться к низковольтным распределительным электрическим цепям;

• контроллер не предназначен для работы во взрывоопасной зоне;

• не допускается эксплуатация контроллера со снятыми или имеющими повреждения корпусными деталями;

• контроллер должен устанавливаться на вертикальную поверхность с ориентацией в соответствии с рисунками 1.3, 1.4;

• при работе контроллера должна быть обеспечена свободная циркуляция воздуха через отверстия в корпусе;

• напряжение питания контроллера должно соответствовать варианту исполнения источника питания;

• все подключения и отключения цепей к контроллеру допускается производить только после снятия питающих напряжений;

• не допускается попадание на корпус и внутренние части контроллера агрессивных химических веществ и их паров;

• не допускается превышать нормы механических воздействий на контроллер, указанных в таблице 1.3.

2.2 Инструменты и ПО для работы

Для работы с контроллером требуется следующее программное обеспечение:

• система программирования *CoDeSys V3.x Development System* ("3S-Smart Software Solutions");

• пакет поддержки контроллера Элсима "*EleSy ELSYMA TSP_vXX.XX.XXXX*" (АО "ЭлеСи");

Для работы с системой программирования требуется ПК (или ноутбук) с характеристиками, перечисленными в таблице 2.1.

Требование	Значение
Процессор	Pentium V, Centrino > 3 ΓΓμ
	Pentium M > $1,5$ ГГц
	(рекомендуется Pentium V, Centrino > $3,5$ ГГц, Pentium M > $2,0$ ГГц)
O3Y (RAM)	2 Гбайт (рекомендуется 4 Гбайт)
Объем свободного места на	500 MEAUT (PORONAUTION 1 FEAUT)
системном диске	500 Моаит (рекомендуется 7 Гоаит)
Операционная система	MS Windows XP/7/8

Таблица 2.1 – Аппаратные и системные требования

2.3 Общий порядок работы с контроллером

Работа с контроллером осуществляется в следующем порядке:

1 Извлечь устройство из упаковки в соответствии с требованиями, указанными в 2.4.

2 Собрать контроллер, установить на рабочую поверхность, подключить к сети в соответствии с приведёнными в 2.5 указаниями, подключить необходимые для работы кабели.

3 Установить ПО (система программирования *CoDeSys V3.x Development System* и пакет поддержки контроллера Элсима), необходимое для работы с контроллером (см. 2.6).

4 Создать проект и управляющую программу для контроллера (см. 2.7).

5 Настроить соединения с контроллером (см. 2.8).

6 Загрузить созданную программу в контроллер и провести отладку (см. 2.9).

2.4 Распаковывание

Распаковывание контроллера должно производиться в следующем порядке:

1 После получения, длительного хранения или транспортирования контроллеров в групповой транспортной таре произвести внешний осмотр транспортного ящика и проверить целостность упаковки.

2 Перед распаковыванием контроллера после транспортирования при температуре окружающей среды ниже 0 °C необходимо выдержать его в упаковке не менее 6 часов в помещении, в котором он будет эксплуатироваться.

3 Вскрыть транспортный ящик, извлечь из него упаковочную ведомость. Проверить соответствие комплектности упаковочной ведомости.

4 Произвести первичный осмотр контроллера на отсутствие повреждений корпуса, целостности маркировки. Для этого извлечь контроллер из упаковочного ящика и проверить:

□ отсутствие видимых механических повреждений, вмятин и следов коррозии составных частей контроллера;

отсутствие повреждений и загрязнения разъемов;

□ состояние и четкость маркировки;

Повторное упаковывание контроллера должно проводиться в соответствии с указаниями, представленными в 5.1.

2.5 Установка и подключение

Порядок установки и подключения контроллера:

1 Установить контроллер на DIN-рейке в соответствии с 1.6. Отклонение от вертикальной оси не должно превышать 15°.

2 Установить требуемый режим работы контроллера с помощью переключателя "SW" согласно указаниям, представленным в 1.9.1–1.9.4.

3 Подключить внешнее питание к контроллеру согласно описанию, представленному в 1.8.2.

4 Подключить в соответствии с маркировкой кабели соединения контроллера с объектами контроля и управления и питающими напряжениями. Схемы подключения приведены в соответствующих разделах данного документа.

5 Подать питание на контроллер.

6 Через несколько секунд устанавливается индикация, соответствующая режиму инициализации, далее индикация, соответствующая рабочему режиму (описание индикации контроллера приведено в таблице 1.5).

2.6 Установка программного обеспечения

2.6.1 Общие сведения о системе программирования

Программное обеспечение контроллера основано на системе разработки *CoDeSys* компании "3S-Smart Software Solutions" (Германия) и предназначено для программирования контроллеров на языках в соответствии со стандартом *IEC 61131-3*.

В базовый состав комплекса *CoDeSys* входят две системы: система разработки и система исполнения. Система разработки функционирует на компьютере и представляет собой инструмент для проектирования, конфигурирования системы и создания кода управляющей программы для ПЛК. Система исполнения (ИС) функционирует в контроллере и обеспечивает загрузку кода прикладной программы в контроллер, исполнение управляющей программы и выполнение отладочных функций.

Базовая версия *CoDeSys* специально адаптирована для функционирования в контроллере Элсима. В дополнение к имеющимся инструментам комплекса разработаны встраиваемые компоненты поддержки контроллера для максимально эффективной разработки прикладных программ.

Разработка прикладных программ в среде *CoDeSys* обеспечивает:

- единую среду конфигурирования, разработки программ и отладки;
- возможность разработки программ на пяти языках программирования IEC 61131-3:
 □ IL (Instruction List) список инструкций;
 - □ ST (Structured Text) структурированный текст;
 - □ FBD (Function Block Diagram) функциональные блоковые диаграммы;
 - □ LD (Ladder Diagram) релейно-контактные схемы;
 - □ SFC (Sequental Function Chart) последовательные функциональные схемы.

Дополнительно поддержан язык непрерывных функциональных схем CFC;

• прямую генерацию машинного кода, что обеспечивает высокое быстродействие управляющих программ;

• возможность производить отладку программы без привлечения аппаратных устройств благодаря наличию встроенного эмулятора.

2.6.2 Установка CoDeSys и пакета поддержки контроллера

Порядок установки ПО для программирования контроллера:

1 Установить систему программирования CoDeSys.

Для установки системы программирования *CoDeSys* следует запустить файл *Setup_CoDeSysV*<*Version*>.*exe* и далее следовать указаниям "**Мастера установки**" (**InstallShield Wizard**).

2 Установить пакет поддержки контроллера "*EleSy ELSYMA TSP_vXX.XX.XXXX*" (АО "ЭлеСи"). Для установки пакета следует:

2.1 Запустить систему программирования *CoDeSys*. Вид стартовой страницы представлен на рисунке 2.1.

CODESYS		
Файл Правка Вид Проект Компиляция Онлайн	Отладка Инструменты Окно Справка	
🎦 🛎 🖬 (종) 🗠 김 🖻 🛍 🗙 (종)	┣ 洒・ピ 醤 ଔ ଔ → ■ ♥ [ロ 窄 セュ *ュ	\$ ¢ ≓
Устройства 🗸 🕈 🗙	💉 🛃 Стартовая страница 🗙	-
	🍙 EleSy V3.5 SP6 Patch 1	
	Основные операции	Последние ново
	管 Новый проект	~
	🗃 Открыть файл проекта	The current news channel
	🗃 Открыть проект на ПЛК	might not be valid or your
		Internet connection
	Недавние проекты	might be unavailable. To
		change the news channel,
		go to the Options dialog
		Load&Save
		category.
	 ракрыть страницу после загрузки проекта Показать страницу при записка 	
		<u>×</u>
Сооощения - всего и ошибок, и предупреждении, и со Последняя компиг	оощении	ьзователь: (никто)

Рисунок 2.1 – Система разработки CoDeSys. Вид стартовой страницы

2.2 В меню *Инструменты* выбрать команду *Менеджер пакетов*.... При этом появится окно 2.2.

Рисунок 2.2 – Система разработки CoDeSys. Окно "Менеджер пакетов"

2.3 Нажать кнопку "Установить ..." и в окне выбора файла (рисунок 2.3) выбрать файл *ELSYMA TSP* (*<version>).package*.

Контроллер программируемый логический Элсима

Открыть						? ×
<u>П</u> апка:	EleSy ELSY	MA TSP_v03.02.6368	•	G 😰 I	• 🖽 🥙	
Недавние документы Рабочий стол Рабочий стол Мои документы Мой компьютер	ELSYMA TSP 3	3.5.6.6368 (03.02).ра	ICKage			
Сетевое окружение	<u>И</u> мя файла: <u>Т</u> ип файлов:	ELSYMA TSP 3.5.6 Package (*.packag	6.6368 (03.02).p ge)	ackage	- -	<u>О</u> ткрыть Отмена

Рисунок 2.3 – Система разработки CoDeSys. Окно выбора файла

- 2.4 Далее следовать указаниям "Мастера установки".
- 2.5 По завершению установки следует перезапустить систему *CoDeSys* для вступления в силу всех изменений.

В результате будут установлены все профили, библиотеки, компоненты и описания устройств, необходимые для обеспечения поддержки контроллера Элсима в системе *CoDeSys*.

2.7 Создание проекта

Разработка проекта контроллера Элсима включает следующие действия:

- 1 Создание конфигурации контроллера (см. 2.7.1).
- 2 Создание главной программы и других программных компонентов (см. 2.7.2).
- 3 Загрузка проекта в контроллер (см. 2.8).
- 4 Запуск задачи, мониторинг и отладка (см. 2.9.2).

2.7.1 Создание конфигурации

Порядок создания конфигурации:

- 1 Запустить систему разработки CoDeSys (см. 2.7.1.1).
- 2 Создать проект (см. 2.7.1.2).
- 3 Добавить устройства в конфигурацию (см. 2.7.1.3).
- 4 Редактировать конфигурацию при необходимости (см. 2.7.1.4).
- 5 Задать параметры работы отдельным модулям в дереве конфигурации (см. 2.7.1.4.1).
- 6 Назначить переменные сигналам (см. 2.7.1.4.2).

2.7.1.1 Запуск системы программирования

Запуск системы разработки CoDeSys следует осуществлять одним из следующих способов:

• С помощью ярлыка

на рабочем столе; • С помощью команды системного меню Windows:

Пуск \rightarrow Программы \rightarrow 3S CODESYS \rightarrow CODESYS \rightarrow CODESYS without profile.

В появившемся окне выбора профиля (рисунок 1.5) необходимо выбрать EleSy ELSYMA V < 6 epcus>SP6 Patch < 6 epcus>.

Select Profile						
-	Version profile:	EleSy ElsyMA V3.5 SP6 Patch 1				
		CODESYS V3.5 SP6 Patch 1 Composer Dedicate CODESYS V3.5 SP6 Patch 1 Elessi Elevidit V3.5 SP6 Patch 1 (DEPLIC)				
		EleSy ElsyMA V3.5 SP6 Patch 1				

Рисунок 2.4 – Система разработки CoDeSys. Выбор профиля

ВАЖНО! Во время первого запуска системы разработки CoDeSys появляется окно, в котором предлагается выбрать параметры среды по умолчанию (Choose your default environment settings). Необходимо выбрать профессиональный профиль (Professional) (рисунок 2.5), так как он является наиболее универсальным и обладает возможностями, которые недоступны стандартному профилю. После выбора нажать кнопку «Start».

Choose Default Environment Settings
Before you begin using this software for the first time, you need to specify the type of development activity you engage in the most. This information is used to apply a predefined collection of settings to the development environment that is designed for your development activity.
You can choose to use a different collection of settings at any time. From the Tools menu, choose Options and then choose Features.
Professional
Description:
Recommended for users with advanced requirements. All features are available, and some user interface aspects show more complexity in order to unveil all possibilities of the system.
<u>S</u> tart <u>Ex</u> it

Рисунок 2.5 - Выбор параметров среды по умолчанию

2.7.1.2 Создание проекта

Конфигурация контроллера, программные компоненты (POUs), составляющие код управляющей программы, и другие объекты содержатся в проекте. Для создания проекта следует:

1 В меню **Файл** выбрать команду **Новый проект...** или нажать клавиши [*Ctrl*]+[*N*] (рисунок 2.1).

2 В окне "Новый проект" (рисунок 2.6) в списке Шаблоны: выбрать шаблон *Стандартный проект*.

Выбранным шаблоном проекта определяются базовые настройки проекта (структура меню, предопределенные объекты и др.).

	255 255	Templates:	F	Categories
	278 278			
andard ject w	Standard Standar project project w	Empty project	oraries ojects	Pri
1 for PLC_PRG	npty implementation for P	ne application, and an e	ontaining one device, c	A project c
			myTect1	Namer
		SycPrilmyTect1	DutemolElsymaCoDe	Location:
		,5,5,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	In the second second second	Focacioni
<u>-</u>		≥SysPrj\myTest1	myTest1 D:\temp\ElsymaCoDe	<u>N</u> ame: Location:

Рисунок 2.6 – Система разработки CoDeSys. Выбор шаблона проекта

3 В поле *Имя:* задать имя проекта, а в поле *Расположение:* указать место для сохранения файлов проекта.

4 Нажать кнопку "**OK**". Проект сохраняется в указанном месте в файле <project_name>.project.

5 В окне "Стандартный проект" в списке Устройство: выбрать контроллер ELSYMA (EleSy Company), в списке PLC_PRG на: – язык реализации основного программного компонента Структурированный текст (ST) (рисунок 2.7).

6 Нажать кнопку "ОК".

Standard P	roject		×
6	You are abou objects within	t to create a new standard project. This wizard will create the following this project:	
	- One program	nmable device as specified below NG PRG in the language specified below	
	- A cyclic task	which calls PLC_PRG	
	- A reference	to the newest version of the Standard library currently installed.	
	<u>D</u> evice:	ELSYMA (EleSy Company)	•
	PLC_PRG in:	Structured Text (ST)	•
		OK Caro	- I
		Cand	

Рисунок 2.7 – Система разработки CoDeSys. Настройка стандартного шаблона проекта

Созданный проект отображается в области *Устройства* в виде дерева объектов (рисунок 2.8).

Рисунок 2.8 – Система разработки CoDeSys. Дерево объектов проекта

Проект включает одно или несколько устройств – элементов первого уровня (узел *Device (ELSYMA)* на рисунке 2.8). Каждое устройство включает два основных объекта: *Plc Logic* (контейнер для программных компонентов) и аппаратную конфигурацию.

Контейнер *Plc Logic*, в свою очередь, содержит:

• *Application* – представляет собой набор объектов для запуска экземпляра программы в конкретном аппаратном устройстве и включает в себя следующие компоненты:

□ *Менеджер библиотек* – компонент, предоставляющий доступ к библиотекам *CoDeSys*, которые представляют собой специализированный набор функций и функциональных блоков (ФБ), таких как, например, ФБ м23х, СЕЗОХ;

□ программные компоненты:

– *PLC_PRG (PRG)* – основная программа, самый верхний уровень проекта. При запуске проекта в контроллере программа *PLC_PRG* первая получает управление;

- любое количество других программных компонентов (POU);

• Конфигурация задач – конфигуратор для управления задачами с главной задачей Main Task;

• другие компоненты, поддерживаемые системой *CoDeSys* (список глобальных переменных, Interface и др.).
2.7.1.3 Добавление устройств в конфигурацию

Графически конфигурация представлена как дерево устройств. Основным узлом (самый верхний уровень) является проект контроллера Элсима. Именно основной узел определяет, какие устройства могут быть добавлены и в каком порядке.

В состав дерева устройств проекта входят следующие узлы (рисунок 2.9):

• Базовый узел подключения. Добавляется в первую очередь к узлу *Device (ELSYMA)* и служит для логической организации взаимодействия контроллера Элсима с модулями УВВ;

□ Контроллер – добавляется к базовому узлу, при добавлении указывается исполнение контроллера, и включает в себя следующие узлы:

- настройка и работа с контроллера (СРU_INFO);
- программные модули (SoftModules);
- настройка и работа с интерфейсом *Ethernet* (LAN);
- настройка и работа с интерфейсом *RS-485* (**RS485**);
- настройка сетевого шлюза (DefHost);
- настройка и работа с периферийными устройствами (Peripherial);
- настройка и работа с вводом-выводом контроллера (CPU_IO);

- настройка и работа с коммуникационным интерфейсом GSM (SimpleGSM);

□ Модули УВВ (ExtModules).

Список поддерживаемых аппаратных и программных модулей и узел для добавления представлен в таблице 2.2. Каждый модуль в сервисной программе идентифицируется коротким символьным обозначением, эти обозначения приведены в столбце *Обозначение*.

Узел	Обозначение	Назначение	Номер раздела
ModuleCP	ELSYMA_M01	Программный модуль, обеспечивающий функциональность исполнения контроллера Элсима-M01-ZZZU	3
	ELSYMA_M01_GSM	Программный модуль, обеспечивающий функциональность исполнения контроллера Элсима-M01-ZZZU-GSM	3
SoftModules	MBTCPM	Программный модуль организации доступа к сигналам контроллера по протоколу Modbus TCP с функциональностью сервера с поддержкой 16-ти соединений	3.3
	MBTCPS	Программный модуль организации доступа к сигналам контроллера по протоколу <i>Modbus TCP</i> в режиме Slave , обеспечивающий подключение до четырех опрашивающих устройств	3.4
	MBMRTU	Программный модуль организации доступа к сигналам контроллера по протоколу <i>Modbus RTU</i> с функциональностью Master -устройства (обеспечивает опрос до 16 подчиненных устройств по одному каналу связи)	3.5
	MBRTUS	Программный модуль организации доступа к сигналам контроллера по протоколу <i>Modbus RTU</i> в режиме <i>Slave</i> (Server)	3.6
	IEC104M	Программный модуль организации доступа к сигналам контроллера по протоколу <i>МЭК</i> в режиме потребителя данных (MasterM)	См. раздел 3 *
	IEC104S	Программный модуль организации доступа к сигналам контроллера по протоколу <i>МЭК</i> в режиме поставщика данных (Slave)	См. раздел 4 *
	ELMicronMst	Программный модуль, предназначенный для обеспечения опроса до <i>16</i> -ти счетчиков электроэнергии СЭТ4ТМ03М и ПСЧ-4ТМ.05МК через интерфейс <i>RS-485</i>	3.7
	tsync	Программный модуль, предназначенный для работы в составе программного обеспечения контроллера Элсима-М01 и обеспечивающий синхронизацию временем с модулями УВВ	Нет пока
* См. лок	умент "Контроллер п	рограммируемый логический Элсима. Подлержка	протоколов

Габлица 2.2 – Список устройств,	доступных для добавления	узла ModuleCP
---------------------------------	--------------------------	---------------

* См. документ "Контроллер программируемый логический Элсима. Поддержка протоколо передачи данных ГОСТ Р МЭК 60870-5-104-2004. Руководство по применению"

Для добавления устройств в конфигурацию следует:

1 Выделить нужный узел в дереве устройств и выбрать команду *Добавить устройство*... контекстного меню (рисунок 2.10).

Ж	Вырезать
Đ	Копировать
C2	Вставить
\times	Удалить
G.	Свойства
	Добавить объект
	Добавить папку
	Обновить устройство
ß	Редактировать объект
	Редактировать объект в
	Изменить I/О-соотнесение
	Импорт соотнесений из CSV
	Экспортировать соотнесения в CSV
	Режим онлайн-конфигурации
	Сброс заводской устройства [Device]
	Эмуляция
	Конфигурация устройства 🛛 🕨

Контроллер программируемый логический Элсима

Рисунок 2.10 – Система разработки *CoDeSys*. Вид контекстного меню элементов дерева устройств

2 В окне "Добавить устройство" в группе Устройство: отображается список доступных для добавления к данному узлу устройств. Устройства в списке сгруппированы по функциональному назначению. В поле Производитель: следует выбрать EleSy Company – устройства компании "ЭлеСи" и нажать кнопку "Добавить устройство" (рисунок 2.11).

После этого устройство появится в дереве устройств, а диалоговое окно "Добавить устройство" остается открытым (т.к. не является модальным).

3 Для добавления остальных устройств повторить пункты 1-2.

П р и м е ч а н и е – Если обязательное поле не было заполнено, рядом с этим полем появляется значок [].

191					
	ELSYMA_M01_GSM				
Дейс	твие:				
• <u>A</u>	о <mark>бавить устройство С</mark> Еставить ус	тройство С Подкл	ночить устройст	во С <u>О</u> бновить устр	ройство
Устр	ойство:				
Трои	зводитель: <all vendors=""></all>				•
Имя		Производитель	Версия		
B	ጷ Оборудование компании ЭлеСи				
	🖻 📆 плк				
	Процессорные модули	FlaGu Company	1.0.0.5407		
		Elesy Company	1.0.0.5697		
		cleby company	1.0.0.3097		
- c	отображать все версии (для эксперто)	в)			
	отображать все версии (для эксперто)	s)			
	отображать все версии (для эксперто руппировать по категориям	в)			
	отображать все версии (для эксперто руппировать по категориям юказать устаревшие версии	в)			
Г с Г г Г п	отображать все версии (для эксперто руппировать по категориям юказать устаревшие версии	в)			
	отображать все версии (для эксперто руппировать по категориям юказать устаревшие версии	в)			
Т О Г П 1нфа	отображать все версии (для эксперто руппировать по категориям юказать устаревшие версии ормация:	в)			
С С П 1нфо Я	отображать все версии (для эксперто руппировать по категориям юказать устаревшие версии ормация:	в)			
То 7 г 1нфо 1)	отображать все версии (для эксперто руппировать по категориям юказать устаревшие версии ормация: Имя: ELSYMA_M01_GSM Проказа и теля - EleSt Composition	s) 			
— о 7 г П 1нфо]	отображать все версии (для эксперто руппировать по категориям юказать устаревшие версии ормация: Имя: ELSYMA_M01_GSM Производитель: EleSy Company Сормани Поризсори и разлат	s)			
С С П 1нфо Д	отображать все версии (для эксперто руппировать по категориям юказать устаревшие версии ормация: Имя: ELSYMA_M01_GSM Производитель: EleSy Company Группы: Процессорные модули Версие: 1 0.0 5607	в)			
Т с 7 г 1нфо	отображать все версии (для эксперто руппировать по категориям юказать устаревшие версии ормация: Имя: ELSYMA_M01_GSM Производитель: EleSy Company Группь: Процессорные модули Версия: 1.0.0.5697	в)			~
С Г П 1нфо]	отображать все версии (для эксперто руппировать по категориям юказать устаревшие версии ормация: Имя: ELSYMA_M01_GSM Производитель: EleSy Company Группь: Процессорные модули Версия: 1.0.0.5697 Номер модели: ELSYMA_M01_GSM Описание : CM Module ELSYMA_M01_GSM	6)	and 1 GSM		
] с 7 г 1нфо]	отображать все версии (для эксперто руппировать по категориям юказать устаревшие версии ормация: Имя: ELSYMA_M01_GSM Производитель: EleSy Company Группы: Процессорные модули Версия: 1.0.0.5697 Номер модели: ELSYMA_M01_GSM Описание : CP Module ELSYMA_M01	e) GSM with 1 Ethernet	and 1 GSM		
С с Г г Пнфо	отображать все версии (для эксперто руппировать по категориям юказать устаревшие версии ормация: Имя: ELSYMA_M01_GSM Производитель: EleSy Company Группь: Процессорные модули Версия: 1.0.0.5697 Номер модели: ELSYMA_M01_GSM Описание : CP Module ELSYMA_M01	e) _G5M with 1 Ethernet	and 1 GSM	V 0	
с с 7 г 1нфо]	отображать все версии (для эксперто руппировать по категориям юказать устаревшие версии ормация: Имя: ELSYMA_M01_GSM Производитель: EleSy Company Группь: Процессорные модули Версия: 1.0.0.5697 Номер модели: ELSYMA_M01_GSM Описание : CP Module ELSYMA_M01 авить выбранное устройство как	в) _GSM with 1 Ethernet	and 1 GSM		
С С П П П П П П П П П П П П П П П П П П	отображать все версии (для эксперто руппировать по категориям юказать устаревшие версии ормация: Имя: ELSYMA_M01_GSM Производитель: EleSy Company Группы: Процессорные модули Версия: 1.0.0.5697 Номер модели: ELSYMA_M01_GSM Описание : CP Module ELSYMA_M01 авить выбранное устройство как лесP	в) _G5M with 1 Ethernet последнего пото	and 1 G5M		
С С П 1нфо 1 1 1 1 0 0 6 а	отображать все версии (для эксперто руппировать по категориям юказать устаревшие версии ормация: Имя: ELSYMA_M01_GSM Производитель: EleSy Company Группы: Процессорные модули Версия: 1.0.0.5697 Номер модели: ELSYMA_M01_GSM Описание : CP Module ELSYMA_M01 авить выбранное устройство как лесР (Можно выбрать другой таргет-узея	в) _G5M with 1 Ethernet последнего пото	and 1 G5M		
С С П П П П П П П П П П П П П П П П П П	отображать все версии (для эксперто руппировать по категориям юказать устаревшие версии ормация: Имя: ELSYMA_M01_GSM Производитель: EleSy Company Группы: Процессорные модули Версия: 1.0.0.5697 Номер модели: ELSYMA_M01_GSM Описание : CP Module ELSYMA_M01 описание : CP Module ELSYMA_M01 авить выбранное устройство как лесР (Можно выбрать другой таргет-узел	в) _G5M with 1 Ethernet последнего пото , пока окно открытс	and 1 G5M MKa		
С с 7 г. 1нфо 1	отображать все версии (для эксперто руппировать по категориям юказать устаревшие версии эрмация: Имя: ELSYMA_M01_GSM Производитель: EleSy Company Группы: Процессорные модули Версия: 1.0.0.5697 Номер модели: ELSYMA_M01_GSM Описание : CP Module ELSYMA_M01 авить выбранное устройство как леСР (Можно выбрать другой таргет-узел	в) _GSM with 1 Ethernet последнего пото , пока окно открыто	and 1 G5M		

Рисунок 2.11 – Система разработки CoDeSys. Окно добавления устройств

2.7.1.4 Просмотр и редактирование данных модуля

Каждый функциональный модуль работает с данными нескольких категорий:

• конфигурационные параметры;

• данные модуля. По функциональному назначению данные подразделяются на три типа:

□ входные/выходные данные (измерения, сигналы управления, данные обмена по протоколам и др.);

□ диагностические данные: статус работы модуля, наличие связи с ЦП и др.;

□ статистические данные: версии ПО модулей и компонентов, количество пересбросов, ошибок передачи и т.п.

Доступ к данным модуля осуществляется в области просмотра и конфигурирования устройства.

Для просмотра данных модуля следует выделить имя модуля в дереве устройств и дважды нажать левую кнопку "мыши", при этом в области просмотра и конфигурирования появляется закладка с именем устройства.

Закладка данных модуля включает несколько встроенных закладок:

- *Редактор параметров* (см. 2.7.1.4.1);
- Соотнесение входов/выходов (см. 2.7.1.4.2);
- Состояние (см. 2.7.1.4.3);
- Информация (см. 2.7.1.4.4).

2.7.1.4.1 Закладка Редактор параметров

На закладке *Редактор параметров* (рисунок 2.12), в зависимости от реализации конкретного модуля, отображаются следующие параметры:

- Информация модуля;
- Системные параметры модуля;
- Конфигурационные параметры модуля.

Параметры определяют индивидуальные настройки модуля и задаются на начальном этапе конфигурирования. Параметры каждого модуля описываются в подразделах "Настройка параметров модуля".

Редактор п							
🗸 Инфо	 Информация Модуля 						
 Конфигурационные Параметры Модуля 							
Имя	Имя Значение Описание						
ModeFrec	Disable	Режим интегрирования					
InpType1	Disable	Тип аналогового входа 1					
Coefficien	1 0.008	Коэффициент интегрирования канала 1					
InpType2	InpType2 Disable Тип аналогового входа 2						
Coefficien	Coefficient2 0.008 Коэффициент интегрирования канала 2						
InpType3	InpType3 Disable Тип аналогового входа 3						
Coefficien	3 0.008	Коэффициент интегрирования канала 3					
InpType4	Disable	Тип аналогового входа 4					
Coefficien	4 0.008	Коэффициент интегрирования канала 4					
OutpType	1 Voltage	Тип аналогового выхода 1					
OutpType	2 Voltage	Тип аналогового выхода 2					

Рисунок 2.12 – Система разработки CoDeSys. Пример закладки Редактор параметров

Параметр редактируется следующим образом:

- 1 Выбрать параметр для редактирования.
- 2 Установить курсор "мыши" в область ячейки значения параметра.
- 3 Дважды нажать левую кнопку "мыши".
- 4 Ввести или выбрать необходимое значение параметра.

Редактирование параметров выполняется в ячейках столбца *Значение* с помощью одного из следующих элементов управления:

1000 Pefault – счетчика значений;
 1 Pefault – поля ввода значений;
 None Pefault – списка выбора значения.

Кнопка Станавливает значение "по умолчанию". Данная кнопка находится в активном состоянии, если значение в ячейке задано пользователем.

2.7.1.4.2 Закладка Соотнесение входов/выходов

На закладке *Соотнесение входов/выходов* отображаются входные/выходные и диагностические данные – см. рисунок 2.13.

Іепеменная	Соотнесение	Канал	Annec	Тип	Елиница	Описание
	Coornecenne	TKanayi	ндрос	11111	C AFT I THOUGH	Simedinio
Calpais Analog Outputs						
Digital Outputs						
· 📴 Inputs						
🗐 📴 Analog Inputs						
- *		AIn1	%ID47	REAL		Значение измерительного канала 1 (В, мА, градус Цельсия
*		AIn1Diag	%IB192	BYTE		Диагностика работы измерительного канала 1
*		AIn2	%ID49	REAL		Значение измерительного канала 2 (В, мА, градус Цельсия
🍫		AIn2Diag	%IB200	BYTE		Диагностика работы измерительного канала 2
🍫		AIn3	%ID51	REAL		Значение измерительного канала 3 (В, мА, градус Цельси
🍫		AIn3Diag	%IB208	BYTE		Диагностика работы измерительного канала 3
🍫		AIn4	%ID53	REAL		Значение измерительного канала 4 (В, мА, градус Цельсия
L ᡟ		AIn4Diag	%IB216	BYTE		Диагностика работы измерительного канала 4
🖻 📴 Digital inputs						
ачение измерительного кан = Создать новую перемен пции цикла шины	нала 1 (В, м/ Сбро нную 🍫 = Соот	с соотнесени гнести с сущ	19 Всегда об ествующей пе	новлять ременно	ы переменн ой	ные: Использовать установку родительского устройств
	ьзовать родитель	скую устано	овку цикла шин	ы	_	

Рисунок 2.13 – Система разработки *CoDeSys*. Представление входных/выходных и диагностических данных

Данные представлены в форме таблицы сигналов *Каналы*. Сигнал – это элемент данных с набором атрибутов и с определенным адресом в памяти контроллера. Строками таблицы *Каналы* являются сигналы, столбцами – атрибуты сигналов.

Каждый сигнал модуля ввода-вывода может быть представлен в виде структуры или элементарного типа данных. Доступные типы структур данных для описания сигналов представлены в таблице.

Сигналы в таблице по назначению объединены в следующие группы:

- Bxodные сигналы (Input Signals);
- Выходные сигналы (Output Signals);
- Диагностические сигналы (Diagnostics):

□ Системные сигналы (System) – в зависимости от реализации модуль имеет стандартный набор системных выходных сигналов.

Состав групп и сигналов в группах индивидуален для каждого модуля и описывается в разделах на каждый модуль (см. "Настройка параметров модулей").

В столбцах представлены следующие атрибуты сигналов:

• Переменная:

□ для группы – имя группы;

□ для сигнала – имя назначенной сигналу переменной и обозначение области хранения переменной в соответствии с таблицей 2.3;

Таблица 2.3 – Области хранения переменных

Обозначение	Индекс	Описание
×.	Ι	Область входов
×.	Q	Область выходов
\$	M	Прямоадресуемая память

- Соотнесение тип маппинга;
- Канал имя сигнала;
- Адрес адрес сигнала в памяти контроллера;
- Тип тип данных значения сигнала в соответствии с таблицей В.1;
- *Текущее значение* текущее значение сигнала (отображается в режиме online);
- Единица единицы измерения значения сигнала;
- Описание описание сигнала.

При выборе имени сигнала в столбце *Переменная*, описание сигнала отображается в поле, находящемся под таблицей сигналов.

Из управляющей программы доступ к сигналам осуществляется через переменные, назначенные сигналам в конфигурации. Такие сигналы называются смаппированными, а сам процесс – маппингом (mapping).

Предусмотрено два типа маппинга:

• на новую переменную – ^{Создать новую переменную}. Такая переменная будет автоматически объявлена во внутреннем списке глобальных переменных *CoDeSys* (с указанным именем указанного типа);

• на существующую переменную – [•] = Соотнести с существующей переменной . Такая переменная должна быть объявлена пользователем.

Существует возможность выполнения маппинга на следующих закладках:

1 *Карта сигналов* – данная закладка используется для создания каналов или групп сигналов и маппирования созданных сигналов в области *Привязка и автонаименование*. Процесс выполнения маппирования сигналов к переменным на закладке *Карта сигналов* описан в подразделах на отдельные модули (см., для примера, 3.4.2.1);

2 *Соотнесение ввода/вывода* – данная закладка используется для маппирования ранее созданных сигналов или заданных в конфигурации диагностических/статистических параметров.

Рисунок 2.14 – Система разработки CoDeSys. Окно "Ассистент ввода"

Для того чтобы смаппировать переменную, необходимо на закладке *Соотнесение ввода/вывода*:

1 В столбце *Переменная* выделить сигнал и дважды нажать левую кнопку "мыши".

2 Ввести имя для назначаемой переменной:

2.1 для маппинга на новую переменную ввести ее имя в поле ввода.

2.2 для маппинга на существующую переменную:

□ в окне "Ассистент ввода" (рисунок 2.14) на закладке *Категории*: в списке *Переменные* отображается список объектов, доступных в проекте. Следует выбрать нужную категорию из списка.

2.3 в области отображения переменных выбрать нужный элемент и имя переменной и нажать кнопку "**OK**".

На рисунке 2.15 представлен пример отображения маппированных переменных.

Outputs							
Analog Outputs							
🗁 📴 Digital Outputs							
Inputs							
- 🧀 Analog Inputs							
Application.PLC_PRG.myAnalogIN_1	~ >	AIn1	%ID47	REAL		Значение измерительного канала 1 (В, мА, градус Цельсия)	
🍫		AIn1Diag	%IB192	BYTE		Диагностика работы измерительного канала 1	
Application.PLC_PRG.myAnalogIN_2	~	AIn2	%ID49	REAL		Значение измерительного канала 2 (В, мА, градус Цельсия)	
· · · · · · · · · · · · · · · · · ·		AIn2Diag	%IB200	BYTE		Диагностика работы измерительного канала 2	
🍫 Application.PLC_PRG.myAnalogIN_3 🛛 🌍		AIn3	%ID51	REAL		Значение измерительного канала 3 (В, мА, градус Цельсия	
*		AIn3Diag	%IB208	BYTE		Диагностика работы измерительного канала 3	
Application.PLC_PRG.myAnalogIN_4	~	AIn4	%ID53	REAL		Значение измерительного канала 4 (В, мА, градус Цельсия)	
L		AIn4Diag	%IB216	BYTE		Диагностика работы измерительного канала 4	
🗁 📴 Digital inputs							
			1				
ние измерительного канала 1 (В, мА, градус Це	альсия) С	брос соотнес	ения Всегда	обновл	іять перем	енные: Использовать установку родительского устрой	

Контроллер программируемый логический Элсима

Рисунок 2.15 – Система разработки CoDeSys. Маппинг переменной

В группе *Опции цикла шины* в поле *Задача цикла шины* существует возможность задать цикл шины:

• *Main Task* – "главная" задача *PLC_PRG*, созданная в проекте "по умолчанию" и выполняемая циклически;

• Использовать родительскую установку цикла шины – используются настройки цикла шины вышестоящего (родительского) сигнала.

Перед запуском для корректной работы программы в контроллере необходимо задать параметры настройки обновления значений переменных, выбрав одно из следующих элементов выпадающего списка *Всегда обновлять переменные:*

• Использовать установку родительского устройства – использовать настройки старшего (родительского, по уровню вложенности) устройства;

• Вкл. 1 (в задаче цикла шины, если не используется) – использовать задачу цикла шины, если ни одна пользовательская задача не задана;

• Включено 2 (всегда в задаче цикла шины) – всегда обновлять переменные при выполнении задачи цикла шины.

ВНИМАНИЕ! В текущей версии сервисной программы не реализована возможность конфигурирования параметров настройки для обновления значений переменных и цикла шины. Описание данных параметров носит информационный характер и пользователю не рекомендуется задавать данные параметры.

ВНИМАНИЕ! Если сигналы были смаппированы, но не используются в управляющей программе, в **online**-режиме их значения обновляться не будут. В процессе отладки можно установить параметр *Всегда обновлять переменные* в значение "*Включено 2*" для обновления сигналов в **online**-режиме. В штатном режиме работы контроллера не рекомендуется использовать данный режим.

В случае необходимости удаления соотнесения переменных нажмите кнопку "Сброс соотнесения".

2.7.1.4.3 Закладка Состояние

На закладке *Состояние* (рисунок 2.16) отображается статус подключенных модулей УВВ. Существуют следующие состояния модулей:

- *n/a* (not available) модуль не доступен;
- запуск модуль в работе.

TPU_IO X	▼
Редактор параметров 🛛 🗮 ElsyMA.CPU_IO Соотнесение входов/выходов 🛛 Состояние	🚯 Информация
ElsyMA.CPU_IO	: n/a
,	

Рисунок 2.16 – Система разработки CoDeSys. Закладка Состояние

2.7.1.4.4 Закладка Информация

На закладке *Информация* (рисунок 2.17) в группе *Общее:* отображается информация об устройстве: символическое обозначение, производитель, тип, версия модуля, номер модели для заказа, описание назначения модуля.

Ten x
Редактор параметров 🗮 ElsyMA.CPU_IO Соотнесение входов/выходов Состояние 🚺 Информация
Общее:
Имя: CPU_IO
Производитель: Eleby Company Группы:
Tun: 32776
версия: 1.0.0.6368
Номер модели: 0
Описание: СРО_10

Рисунок 2.17 – Система разработки CoDeSys. Закладка Информация

2.7.2 Написание кода управляющей программы

Управляющая программа представляет собой набор программных объектов, таких как, компонент доступа к библиотекам, программные компоненты (**POUs**), GVL и др., и предназначена для запуска в конкретном устройстве (контроллере). Помимо стандартных типов данных, в состав пакета поддержки контроллера включены дополнительные типы данных, используемых для работы с контроллером (см. приложение В).

Последовательный процесс создания программных компонентов включает в себя добавление и объявление программного компонента (**POU**):

- объявление переменных и маппинг;
- написание тела компонента.

Правила создания **POU** представлены в стандарте IEC 61131-3, порядок выполнения действий – в документации на систему программирования *CoDeSys*.

При использовании ЭНП (переменные типа **RETAIN**) для контроллера накладывается ограничение – максимальное количество задаваемых в ЭНП переменных не должно превышать 27 Кбайт.

2.8 Настройка соединения с контроллером

Для работы с контроллером имеется возможность применение двух интерфейсов связи:

• Ethernet;

• *USB*.

Для работы через *Ethernet* необходимо подключить контроллер к сети через разъем **LAN1**. В этом случае необходимо предварительно задать корректные сетевые настройки контроллера в соответствии с заданными настройками сети. Процесс изменения сетевых параметров контроллера приведен в приложении Б.

Для работы через USB необходимо предварительно установить драйвер поддержки для работы через USB и подключить контроллер к ПК через разъем USB2. Процесс установки драйвера приведен в приложении Г.

Взаимодействие среды разработки с системой исполнения контроллера осуществляется через специальное приложение – шлюз связи (Gateway).

Система шлюзов позволяет создавать сложные разветвленные системы с использованием различных протоколов связи.

Для настройки соединения с контроллером и загрузки проекта следует задать шлюз связи по необходимости. По умолчанию шлюз связи настроен на локальный компьютер.

В случае необходимости изменения шлюза связи следует:

3 Открыть закладку данных контроллера в области отображения и конфигурирования настроек контроллера, дважды нажав левую кнопку "мыши" на имени контроллера (*Device*) в дереве устройств.

4 Выбрать закладку *Установки соединения* (рисунок 2.18) и выбрать в меню *Gateway* команду *Add new gateway...*.

Рисунок 2.18 – Система разработки CoDeSys. Добавление шлюза связи

5 В окне "Gateway" в поле *Имя:* задать имя шлюза (для примера задано имя *ElsymaGateway*); в поле *Драйвер:* выбрать *TCP*VP (рисунок 2.19), задать IP-адрес и порт шлюза, нажать кнопку "OK".

Gateway		×
<u>И</u> мя:	ElsymaGateway	
Драйвер:	TCP/IP	<u> </u>
IP-Address Port	localhost 1217	
Эта устано адреса для подключит устройстве	вка 'IP-Address' может быть использована для задания IP- а gateway. Это может быть полезно, если вы хотите гься к удаленному gateway, запущенному на другом ПК или э.	
	К	

Рисунок 2.19 – Система разработки CoDeSys. Добавление шлюза связи

2.9 Загрузка проекта в контроллер и отладка

Для загрузки проекта в контроллер и отладки следует:

6 Скомпилировать проект (см. 2.9.1).

7 Выбрать активный контроллер (контроллер, в который будет загружаться проект) (см. 2.9.2).

8 Подключиться к контроллеру. Загрузка проекта производится автоматически при подключении к контроллеру.

9 Запустить программу и отладить возможные ошибки.

2.9.1 Компиляция проекта

Для того чтобы скомпилировать проект, следует выбрать команду меню *Компиляция* или нажать кнопку [*F11*].

Сообщения об ошибках выводятся в область отображения сообщений "Сообщения" (рисунок 2.20).

Контроллер программируемый логический Элсима

Сообщения - всего 2 ошибок, 0 предупреждений, 0 сообще	ний				
Компиляция	🝷 😧 2 ошибон	< 🕐	О предупреждений	🚯 О сообщений 🛛 🗙	
Описание			Проект	Объект	Позиция
Компиляция : Приложение: Device.Application					
типизировать код					
😳 Application.nIoConfigTaskMapCount: Неверный идентификатор. При			boiler Device		
😳 Application.pIoConfigTaskMap^: Разыменование недопус	тимо.		boiler	Device	
Компиляция завершена 2 ошибок, 0 предупреждений	i				
<					>
		0	0 7 0	~ .	

Рисунок 2.20 – Система разработки CoDeSys. Окно сообщений

2.9.2 Выбор активного контроллера

Для работы с контроллером необходимо выбрать из доступных в сети контроллеров необходимый и назначить его активным. Все последующие операции будут выполняться именно с этим контроллером. Чтобы назначить контроллер активным, необходимо:

1 На закладке *Установки соединения* (рисунок 2.18) нажать кнопку "Scan network..." для получения списка доступных устройств.

2 В появившемся окне "Выбор устройства" (рисунок 2.21) в списке устройств шлюза выделить контроллер с нужным идентификатором (ID приведен в квадратных скобках), при этом выбранный контроллер приобретает статус "актив." (см. рисунок 2.18). Подключенный через USB контроллер будет иметь идентификатор, равный 0029.В000.0A18. Пример выбора контроллера, подключенного через USB соединение, приведен на рисунке 2.22.

ID таргета: 1028 0002 Тип таргета: 4096 Производитель	LocalGW ELM01-6F95AD [012B] ELM01-D2A6A9 [011C] ELM01-D580A0 [01C6]	Имя устройства: Сканировать ELM01-D2A6A9 Шіпк Адрес устройства: Шіпк 011C Имя таргета: ELSYMA Версия таргета: 3.5.7.0 3.5.7.0	Cett
		ID таргета: 1028 0002 Тип таргета: 4096 Производитель	

Рисунок 2.21 – Система разработки *CoDeSys*. Выбор активного контроллера, подключенного к общей сети

Руководство по эксплуатации

ELMO1-6F95AD [012B] ELMO1-6FCABC [0108] ELMO1-DZA6A9 [0029,B000,0A18] ELMO1-D580A0 [01C6]	Имя устроиства: ELM01-D2A6A9 Адрес устройства: 0029.B000.0A18 Имя таргета: ELSYMA Версия таргета: 3.5.7.0 ID таргета: 1028 0002 Тип таргета: 4096 Производитель EleSy	Сканировать сете
--	---	------------------

Рисунок 2.22 – Система разработки *CoDeSys*. Выбор активного контроллера, подключенного через USB соединение

3 Для идентификации выбранного контроллера можно нажать кнопку "Wink", при этом на выбранном контроллере происходит 10-кратное мигание индикаторами "L1" и "L2" (рисунок 1.5) с периодом 0,5 с. В случае, если в сети одновременно доступно несколько контроллеров, рекомендуется для проверки правильности выбора использовать команду Wink.

Все последующие операции будут выполняться именно с этим контроллером.

2.9.3 Подключение и загрузка проекта

Для подключения к контроллеру необходимо нажать клавиши [Alt]+[F8]. При появлении вопроса о загрузке задачи в контроллер следует нажать кнопку "Yes".

Примечание – Для загрузки проекта контроллер должен находиться в режиме обслуживания (MAINTENANCE MODE) (см. положение DIP-переключателя "SW" на рисунке 1.16).

При этом, если загружаемый проект полностью соответствует загруженному в контроллер, то происходит подключение к контроллеру без загрузки проекта. После загрузки проект находится в состоянии "Стоп". Признаком того, что программа находится в состоянии "Стоп", служит обозначение

в строке статуса *CoDeSys*.

2.9.4 Запуск и отладка проекта

2.9.4.1 Запуск программы и мониторинг значений

Для запуска программы в контроллере следует нажать клавишу [F5]. Признаком того, ЗАПУСК что программа запущена, служит обозначение в строке статуса *CoDeSys*.

При успешном запуске программы контроллер переходит в online-режим и запускается процесс мониторинга, при котором:

• индикация соответствует рабочему режиму;

• данные обновляются с заданным периодом;

• в окне редактора *POU* и на закладках *Редактор параметров*, *Соотнесение входов/выходов* отображаются текущие значения переменных – см. рисунок 2.23.

Рисунок 2.23 – Система разработки CoDeSys. Работа в online-режиме

2.9.4.2 Отладка проекта

Для отладки управляющей программы предназначен широкий спектр средств:

- мониторинг переменных с возможностью:
 - □ просмотра списка переменных;
 - □ записи и фиксации значений переменных;
 - □ контроля процесса выполнения **POU** в реальном времени (подсветка работающих элементов, отслеживание последовательных состояний и т.д.);
 - □ выполнение по циклам;
- □ точки останова, пошаговое выполнение;
- возможность редактирования кода РОU во время выполнения операции;
- развитые средства визуализации.

Подробное описание использования отладочных функций представлено в документации на систему программирования *CoDeSys*.

2.10 Загрузка ранее созданного проекта

Для загрузки ранее созданного проекта необходимо выполнить следующие действия:

1 Запустить систему разработки CoDeSys (см. 2.7.1.1).

2 Загрузить готовый проект с помощью меню **Файл – Открыть проект** выбрать проект для загрузки.

3 Подключиться к контроллеру (см. 2.9.3).

4 Запустить проект на исполнение (см. 2.9.4).

3 Конфигурирование контроллера

3.1 Добавление модуля в дерево конфигурации

Как уже описывалось в 2.7.1.2 и 2.7.1.3, для работы с контроллером необходимо создать конфигурацию системы, которая представлена в виде дерева устройств. Основным узлом (самый верхний уровень) является контроллер Элсима. При создании конфигурации пользователь должен выбрать тип контроллера, добавить в конфигурацию необходимый набор модулей УВВ (при необходимости) и задать набор необходимых программных модулей. В зависимости от выбранного типа контроллера может быть различный набор интерфейсов и поддерживаемых функций. На рисунке 3.1 приведен пример конфигурации (на рисунке отмечены модули, доступные для выбора пользователем).

Рисунок 3.1 – Дерево устройств. Доступные для выбора модули конфигурации

3.2 Настройка параметров контроллера

Отображение версий ПО, текущих параметров работы и их изменение выполняются в системе *CoDeSys*, на закладке отображения информации и настройки контроллера (коннектор **ELSYMA_M01_XXX** – **CPU_INFO**). Для выполнения операции следует:

1 Подключиться к контроллеру (см. варианты подключения к контроллеру в разделах 2.8 и 2.9. Если неизвестны установленные сетевые параметры, то рекомендуется подключиться к контроллеру с помощью интерфейса USB и задать необходимые сетевые параметры).

2 Открыть закладку просмотра и настройки модуля **ELSYMA_M01_XXX**, выделив коннектор **CPU_INFO** в дереве устройств и дважды нажав левую кнопку "мыши".

3 Перейти на закладку Редактор параметров (рисунок 3.2).

ElsymaTest1_v0003.project* - CODESYS						
Файл Правка Вид Проект Компиляция Онлайн	Отладка Инс	трументы Окно Справи	ca di la constanza di la const			
1111112112111111111111111111111111111						
Устройства 🚽 🗸 🗶						
ElsymaTest1_v0003						
🖻 😏 🔟 Device [соединен] (ELSYMA)	с с с с с с с с с с с с с с с с с с с		информация			
	 Информа 	ция Модуля				
	Имя	Значение	Описание			
PLC_PRG (PRG)	OSCoreVer	3.12.30-rt45-ti2013.12.01-0	302 Версия операционной системы			
🖹 🎆 Конфигурация задач	CSCoreVer	3.5.7.0	Версия ядра CODESYS			
	FWVer	3.0.2.6194	Версия сборки FirmWare			
Elsyma_BN (Elsyma_BN)	DateAndTime	03.01.1970 0:12:22	Текущее время контроллера			
E SYMA M01 GSM (ELSYMA M01	TP	10.24.1.198	IP-annec			
G 🗍 CPU_INFO (CPU_INFO)						
🖿 😏 🔟 SoftModules (SoftModules)	Mask	255,255,254,0	Маска			
□ · · · · · · · · · · · · · · · · · · ·	 Параметр 	ы установки				
😔 🕤 CommSlot (CommSlot)	Имя	Значение О	писание			
	DateAndTime	Set 1972.03.29-00:00:00 Д	ата и время для установки			
😏 🔟 DefHost (DefHost)	TPSet	0000				
	IT DOL					
SimpleGSM (SimpleGSM)	MaskSet	0.0.0.0	аска подсети для установки			
► ▲ ≥ ExtBlocks	Установит	ь время Установить пара	аметрь			
🛫 Устройства 🗋 РОО						
Сообщения - всего 0 ошибок, 0 предупреждений, 0 сооб	іщений					
і Іоследняя компиляция: 😋 0 🕐 0 — Предкомпил.: 👡 📑	запуск	Программа загружена	Программа не изменилась Текущий пользователь: (никто //			

Рисунок 3.2 – Дерево устройств. Отображение информации и настройка контроллера

4 Проверить версии ПО и установленные сетевые параметры в области *Информация модуля*.

5 Изменить при необходимости соответствующие параметры контроллера в области Параметры установки.

Информационные параметры контроллера **ELSYMA_M01_XXX** перечислены в таблице 3.1. Данные параметры не доступны для редактирования пользователем.

Таблица 3.1 – Контроллер ELSYMA-M01	. Информационные параметры

Имя	Значение "по умолчанию"	Описание
OSCoreVer	0.0.0.0	Версия операционной системы
CSCoreVer	0.0.0.0	Версия ядра исполнительной системы CODESYS
FWVer	0.0.0.0	Версия сборки FirmWare
DateAndTime	no data	Текущее время
IP	0.0.0.0	Установленный IP-адрес
Mask	0.0.0.0	Установленная сетевая маска

Для изменения параметров контроллера **ELSYMA_M01_XXX** необходимо в области *Параметры установки* задать нужные значения и нажать на кнопку "Установить время, Установить параметры".

ВНИМАНИЕ! При изменении сетевых параметров *IPSet*, *MaskNet* новые параметры вступят в силу только после перезагрузки контроллера.

3.3 Программный модуль Modbus TCP Master

В данном подразделе представлено описание программного модуля с поддержкой протокола *Modbus TCP* в режиме *Master* (*Client*). Символьное обозначение модуля – **мвтсрм**.

Применение этого программного модуля в составе ПО ПЛК позволяет использовать интерфейс *Ethernet* контроллера для взаимодействия с устройствами в сетях с применением **"MODBUS** протокола Modbus TCP [согласно MESSAGING ON TCP/IP **IMPLEMENTATION** GUIDE" "MODBUS APPLICATION PROTOCOL И SPECIFICATION"].

На рисунке 3.3 представлен вид закладки *Редактор параметров* программного модуля **мвтсрм**. Параметры, приведенные в поле *Информация Модуля*, используются для идентификации и недоступны для редактирования пользователем.

ВНИМАНИЕ! Параметры поля *Конфигурационные Параметры Модуля* используются для настройки данного модуля, и не рекомендуется их изменять.

дактор па	араметров	🗮 Соотнесение входов/выходов Состояние 🌗 Информация		
• Инфор	мация Моду	ля		
Имя	Значение	Описание		
ChName	mbtcpm	Имя канала		
ChNum	1	Номер канала		
ChVersion	0.0.0.6	Версия канала		
ChDate	27.10.2016	Дата создания/изменения канала		
Priority	11	Приоритет канала		
ChDebug	135	Флаг отладки канала		
RealName	no data	Имя канала фактическое		
RealSoft	no data	Имя ПО фактическое		
RealDate no data		Фактическая дата создания канала		
License no data		Наличие лицензии (0 - отсутствует, 1 - присутствует)		
_				
🔿 Конфи	гурационны	е Параметры Модуля		
Имя	Значени	Описание		
DianTime	t 1	Таймаут выдащи диасырстики, с		

Рисунок 3.3 – Модуль Modbus TCP Master. Информация о модуле на закладке "*Pedakmop параметров*"

На рисунке 3.4 представлен вид закладки "*Coomhecenue входов/выходов*" для программного модуля Modbus TCP Master с диагностическими сигналами. Набор сигналов соответствует единому шаблону программных модулей ELSYMA_M01_GSM.

едактор параметров	=	Соотнесение входов	/выходов	Состояни	е 🕕 Ин	формация
Каналы						
Переменная	Co	Канал	Адрес	Тип	Едини	Описание
= 🚞 Diagnostic						
🍫		cstatus	%ID25	UDINT		Статус работы канала
🖨 🍫		chstat	%ID26			Статистика работы канала
🍫		rx_cnt	%ID26	UDINT		Счетчик принятых кадров
🍫		rx_bad_frames	%ID27	UDINT		Счетчик ошибок по приему кадров
··· 🍫		rx_double_frames	%ID28	UDINT		Счетчик принятых кадров дублем
🍫		tx_cnt	%ID29	UDINT		Счетчик переданных кадров
🍫		tx_bad_frames	%ID30	UDINT		Счетчик ошибок по передаче кадров
· · · · *		tx_double_frames	%ID31	UDINT		Счетчик переданных кадров дублем
🚊 ᡟ		libstat	%ID32			Статистика работы библиотеки канала
*		rx_overflow	%ID32	UDINT		Счетчик переполнения входной передачи
		tx_overflow	%ID33	UDINT		Счетчик переполнения выходной передачи

Рисунок 3.4 – Модуль Modbus TCP Master. Диагностические сигналы на закладке "Coomhecenue входов/выходов"

В данной версии сервисной программы конфигурирования программного модуля **Modbus TCP Master** для настройки информационного взаимодействия необходимо:

1 Добавить и сконфигурировать устройство **Server** (в "дереве устройств" по иерархии располагается ниже **МВТСРМ**) (см. 3.3.1).

2 Для каждого из подчинённых устройств создать и сконфигурировать коммуникационный слот (CommSlot) в "дереве устройств" (ELSYMA_m01_GSM -> Lan -> IP) (см. 3.11).

3.3.1 Общий принцип конфигурирования Modbus TCP Master

Конфигурирование протокола *Modbus TCP* в режиме *Master* разбивается на следующие шаги:

1 Добавление в дерево конфигурации модуля – **МВТСРМ**. Для примера на рисунке 3.5 приведена структурная схема конфигурируемой системы. В данном примере **Master TCP** опрашивает три подчиненных устройства **Modbus TCP Slave** с установленными IP-адресами **IP1**, **IP2**, **IP3**.

Контроллер программируемый логический Элсима

Рисунок 3.5 – Структура опроса модуля Modbus TCP Master

1 Добавление в дерево конфигурации для модуля **МВТСРМ** опрашиваемых подчиненных устройств – **МВТСРМServer** (Slave).

2 Формирование для каждого подчиненного устройства **MBTCPMServer** (Slave) карты опроса.

3 Настройка параметров *CommSlot* и связываение его с необходимым модулем **MBTCPMServer** (Slave) (см. рисунок 3.6).

Рисунок 3.6 – Дерево устройств. Связь сигналов MBTCPMServer (Slave) и CommSlot

При конфигурировании *CommSlot* необходимо задать режим работы *TCP Client* в параметре *ModeTransport* и задать адрес подчиненного усройства в параметре *SlaveIPAddress* (см. рисунок 3.7). Подробное описание параметров *CommSlot* представлено в 3.11.4.

Редактор парамет	гров Редак	тор соединения Состояние 🕕 Информация
🔿 Конфигурац	ионные Пара	метры Модуля
Имя	Значение	Описание
Port	502	Номер порта
MaxConnections	4	Количество соединений
ModeTransport	TCP Client	Режим работы транспортного уровня: 0 - в качестве транспортного уровня использовать TCP Server;
SendBuff	4096	Размер буфера хранения перед отправкой
TCP_NoDelay	4	Отключение алгоритма Harля (Nagle algorithm) для обеспечения передачи данных без ожидания запо
SlaveIPAddress	10.24.1.100	

Рисунок 3.7 – Параметры CommSlot

3.3.2 Модуль Server для МВТСРМ

Модуль **Server** предназначен для подготовки конфигурации сигналов удалённого контроллера, опрашиваемого по протоколу *Modbus TCP* (**Slave**-устройство). Символьное обозначение модуля, используемое в сервисной программе – **Server**.

Для каждого опрашиваемого устройства создаётся выделенное сетевое соединение и должна быть подготовлена конфигурация сигналов. Программное обеспечение модуля обеспечивает до 16-ти одновременных подключений к **Server**-устройствам, при этом для каждого **Server**-устройства допускается только одно сетевое соединение. В каждом **Server**-устройстве возможно создавать до 16-ти коммуникационных каналов. Каждый канал представляет собой один запрос к подчинённому устройству. Общее количество сигналов в конфигурации ведущего устройства (Master) не должно превышать 1000 сигналов.

Протокол *Modbus* оперирует битовыми значениями (ячейка – **Coil** и вход – **Input**) и 16ти битными регистрами (регистр – **Holding Register** и входной регистр – **Input Register**).

Поддерживаемые контроллером функции Modbus представлены в таблице 3.2.

Код функции	Описание функции
01 (0x01)	Read Coils (Чтение битовой ячейки)
02 (0x02)	Read Discrete Inputs (Чтение битового входа)
03 (0x03)	Read Holding Registers (Чтение содержимого регистров)
04 (0x04)	Read Input Registers (Чтение содержимого входных регистров)
05 (0x05)	Write Single Coil (Запись битовой ячейки)
06 (0x06)	Write Single Register (Запись в единичный регистр)
15 (0x0F)	Write Multiple Coils (Запись группы битовых ячеек)
16 (0x10)	Write Multiple registers (Запись группы регистров)

Таблица 3.2 – Поддерживаемые функции Modbus

В зависимости от результата выполнения операции, подчиненное устройство возвращает нормальный ответ на запрос либо ответ исключения. В нормальном ответе подчиненное устройство возвращает код функции первоначального запроса и запрошенные данные. Ответ исключения формируется, когда при обработке запроса подчинённым устройством возникает та или иная ошибка, и значение в поле данных содержит код исключения, поясняющий причину возникновения ошибки. Код исключения может передаваться в программу пользователя через специальную, определённую в конфигурации, переменную. Основные коды исключений описаны в таблице 3.3.

Код	Исключение	Описание
00	OK	Нет ошибки
<i>01</i>	ILLEGAL FUNCTION	Генерируется Modbus Server-устройством в ответ на запрос с
		кодом функции, которая не поддерживается (неисправимая
		ошибка, требуется коррекция конфигурации)
02	ILLEGAL DATA	Генерируется Modbus Server-устройством в ответ на запрос с
	ADDRESS	адресом регистров, не входящих в допустимый диапазон адресов
		(неисправимая ошибка, требуется коррекция конфигурации)
<i>03</i>	ILLEGAL DATA VALUE	Генерируется при попытке записи в регистр значения,
		несоответствующего предусмотренному диапазону значений, или
		при запросе больше максимального объема данных
<i>04</i>	SERVER DEVICE	Генерируется Modbus Server-устройством при возникновении
	FAILURE	неисправности устройства в процессе обработки запроса
		(неисправимая ошибка, требуется проверка Modbus Slave)

Таблица 3.3 – Поддерживаемые коды исключения по протоколу Modbus

Код	Исключение	Описание
05	ACKNOWLEDGE	Генерируется Modbus Server-устройством при невозможности
		быстро ответить на запрос, для предотвращения тайм-аута ответа
		(исправимая ошибка, требует повтора запроса)
06	SLAVE DEVICE BUSY	Генерируется при невозможности немедленно обработать запрос.
		Например, при обработке команды записи, если предыдущая
		команда не завершилась (команда не передана в ЦП)
<i>0A</i>	GATEWAY PATH	Ошибка шлюза. Сеть недоступна из-за несконфигурированного
	UNAVAILABLE	или перегруженного внешнего оборудования
<i>0B</i>	GATEWAY TARGET	Подчиненное устройство, подключенное через шлюз, не отвечает
	DEVICE FAILED TO	
	RESPOND	
81	NO CONNECTION	Отсутствует соединение с устройством Modbus Server

Таблица 3.3 – Поддерживаемые коды исключения по протоколу Modbus

Настройка работы модуля Server в системе *CoDeSys* состоит из следующих этапов:

1 Настройка конфигурационных параметров (см. 3.3.2.1).

2 Конфигурирование запросов (карты сигналов) протокола Modbus TCP (см. 3.3.2.2).

3 Соотнесение сигналов (см. 3.3.2.3).

3.3.2.1 Настройка конфигурационных параметров модуля Server

Настройка конфигурационных параметров осуществляется на закладке *Редактор параметров* модуля **Server**. Для выполнения операции следует:

1 Открыть закладку просмотра и настройки модуля **Server**, выделив имя модуля в дереве устройств и дважды нажав левую кнопку "мыши".

2 Перейти на закладку Редактор параметров (рисунок 3.8).

3 Настроить конфигурационные параметры модуля. Описание параметров представлено в таблице 3.4.

2	MBTCPM Server X							
Œ	Редактор параметров) Карта сигналов 🗮 ElsyMA.TC507VirtualServers Соотнесение входов/выходов Состояние 🔍 🍊							
1	🕟 Конфигурационные Параметры Модуля							
	Имя	Значение	Описание					
	Answer_TO	1000	Таймаут ожидания ответа от ведомого устройства, мс					
	CyclicReq_TO	0	Пауза перед запросом к ведомому устройству, мс					
	Poll_TO	0	Пауза перед очередным проходом по таблице опроса, мс					

Рисунок 3.8 – Модуль Modbus TCP Server. Закладка "Редактор параметров"

Имя	Значение по умолчанию	Описание
Answer_TO	1000	Адрес подчиненного устройства. Если подчиненное
		устройство получило запрос с адресом, отличным от адреса,
		заданного в конфигурационных параметрах, то данный
		запрос игнорируется.
		Гаим-аут ожидания ответа от ведомого устроиства (мс).
		Может потребоваться увеличение, если устройство
		малопроизводительное или большая задержка в канале
		передачи данных
CiclicReq_TO	0	Пауза перед запросом к ведомому устройству (мс).
		Может быть необходима для снижения нагрузки на канал и
		малопроизводительное устройство
Poll_TO	0	Пауза перед очередным проходом по таблице опроса (мс)
		Может быть необходима для уменьшения нагрузки на канал

Таблица 3.4 – Модуль Modbus TCP Server. Конфигурационные параметры

3.3.2.2 Конфигурирование передачи данных для Modbus TCP Server

3.3.2.2.1 Понятие коммуникационного канала

Формирование сигналов для чтения/записи данных по протоколу *Modbus TCP* осуществляется через создание коммуникационного канала, описывающего один непрерывный блок данных. Каналы могут быть логически сгруппированы в секции.

Для работы с каналами и секциями используются следующие операции:

4 Создание канала (см. 3.4.2.2).

5 Редактирование (имени секции или атрибутов канала в зависимости от контекста).

6 Копирование (для вставки в такой же модуль в конфигурации).

7 Удаление.

Для выполнения операции следует:

8 Вызвать закладку просмотра и настройки модуля, выделив имя модуля в дереве устройств и дважды нажав левую кнопку "мыши".

9 Выбрать закладку Карта сигналов.

10 Вызвать контекстное меню и выбрать соответствующую команду (рисунок 3.9).

Рисунок 3.9 – Модуль Modbus TCP Server. Общий вид контекстного меню на карте сигналов при создании канала или секции

Канал имеет следующие атрибуты (рисунок 3.10):

• Имя – имя секции/канала. Задает условное наименование блока данных;

	МВТСРМ	MBTCPM / M Server X									
	Редактор параметров 🔀арта сигналов 🗮 ElsyMA.TC507VirtualServers Соотнесение входов/выходов Состояние 🕠 Информация										
	Имя	Адрес подчиненн	Стартовый ад	Количество дан	Функция	Тип данных	Изменять порядок байт	Изменять порядок слов	Тип канала	Описание	
l	- 🖉 Channel1	255	1	100	ReadDiscreteInputs	BIT	False	False	Входной		
I	🦳 🥖 Channel2	255	1	10	ReadCoils	BIT	False	False	Входной		
l	🧹 🖉 Channel3	255	1	100	ReadInputRegisters	WORD	False	False	Входной		
l	🗆 🖋 Channel4	255	1	1	ReadHoldingRegisters	WORD	False	False	Входной		
1	22										

Рисунок 3.10 – Модуль Modbus TCP Server. Вид закладки "Карта сигналов"

• *Адрес подчинённой станции* – адрес опрашиваемой станции (Server);

• Стартовый адрес – начальный адрес блока данных, расположенных в непрерывной области адресов. Для удобства просмотра адреса можно выбрать формат представления адреса – *hex* или *dec*. Необходимо установить в соответствии с адресами сигналов на Server-устройстве;

• Количество данных – количество данных в блоке;

• Функция – функция определяет один из четырех видов данных Modbus (определяется кодом запроса к Server-устройству);

• Тип данных – тип данных выбирается для заданного сегмента (таблица 3.5);

Таблица 3.5 – Допустимые типы данных в зависимости от типов сегментов

	Сегмент									
Тип данных	Disconsta Innuta	Co	oils	Input Degistans	Holding Registers					
	Discrete inputs	Single	Multiple	input Kegisters	Single	Multiple				
BOOL	+	+	+	+	+	+				
BYTE	+	_	+	+	+	+				
SINT	+	-	+	+	+	+				
USINT	+	-	+	+	+	+				
WORD	+	-	+	+	+	+				
INT	+	-	+	+	+	+				
UINT	+	-	+	+	+	+				
DWORD	+	-	+	+	-	+				
DINT	+	-	+	+	-	+				
UDINT	+	-	+	+	-	+				
LWORD	-	_	-	+	_	+				
LINT	-	_	-	+	_	+				
REAL	_	_	_	+	_	+				
LREAL	_	_	_	+	_	+				

• Тип канала – определяет доступ к данным со стороны опросчика:

♦ входной канал – используется для записи данных в подчиненное устройство (сегменты Coils и HoldingRegisters);

♦ выходной канал – используется для чтения данных из подчиненного устройства (сегменты DiscretesInputs, InputRegisters, Coils и HoldingRegisters).

Типы сегментов и принцип размещения данных представлены на рисунке 3.11.

Контроллер программируемый логический Элсима

Рисунок 3.11 – Модуль Modbus TCP Server. Типы сегментов и принцип размещения данных

Кроме этих полей, в окне установки параметров канала (рисунок 3.12) можно выбрать значения для следующих параметров:

• Изменять порядок байтов – устанавливается для изменения порядка последовательности байтов в значении сигнала с размером от двух байтов. Данное значение условно делится на слова (размер слова 2 байта) и в каждом слове выполняется изменение последовательности байтов (применимо к HoldingRegisters и InputRegisters);

• Изменять порядок слов – устанавливается для изменения порядка слов в обратной последовательности в значении сигнала с размером от двух слов (применимо к HoldingRegisters и InputRegisters);

• Описание.

При двойном нажатии левой кнопки "мыши" в области отображения значений любого атрибута, открывается окно редактирования "**Редактор канала**" (рисунок 3.12), описание которого представлено в 3.3.2.2.3.

3.3.2.2.2 Назначение переменных и имен сигналам канала

При создании канала предоставляется возможность назначить сигналам новую или существующую переменную, а также возможность задать параметры для автоматического формирования имен структуры (автонаименования). Формирование имен осуществляется на основе шаблонов имен, представляющих собой произвольные комбинации служебных последовательностей (таблица 3.6) и обычных символов в соответствии с разрешенными в IEC 61131-3 символами для имен переменных.

Название	Обозначение	Пример	Описание
Имя канала	%CHANNEL%	Channel3	Заданное имя канала
Код сегмента (hex)	%PTYPE_X%	x03	Код сегмента данных в
Код сегмента (dec)	%STYPE_D% 03		разных форматах
Код сегмента (строка)	%STYPE_S%	HoldingRegisters	
Тип данных (IEC 61131)	%TYPE%	SIGNAL_REAL_T	Тип данных сигнала
Текущий адрес сигнала (hex)	%CURADDR_X%	x01	Адрес сигнала в различных

Таблица 3.6 – Символьные последовательности для шаблонов имен

Руководство по эксплуатации

Текущий адрес сигнала (dec)	%CURADDR_D%	1	форматах
Номер сигнала в канале (hex)	%NUM_X%	x0000	Номер сигнала в канале в
Номер сигнала в канале (dec)	%NUM_D%	0	разных форматах
Индекс элемента в массиве	%ARRAYINDEX%	[1]	Индекс сигнала в заданном
			диапазоне

Редактор канала		×
Имя: Channel1 Описание:		
 Параметры канала 		
Адрес подчиненной станции	255	BOOL
Кол финкции	BeadDiscreteInputs	
(Tappan / 2000		Конечный адрес:
стартовый адрес		
Количество данных		
Режим работы записи	Cyclic	🔾 hex 💿 dec
Сигнал управления записью		
Изменить порядок байтов	=	
Изменить порядок слов		
передавать сигнал всегда		
🔺 Привязка и автоименование		
Параметры привязки и автоименован	ия	
Общие		
Шаблон имени:	M	Предпросмотр
		ОК Отмена

Рисунок 3.12 – Модуль Modbus TCP Server. Создание канала

3.3.2.2.3 Порядок создания канала

Для создания канала следует:

1 Вызвать закладку просмотра и настройки данных модуля, выделив имя модуля **Server** в дереве устройств и дважды нажав левую кнопку "мыши".

2 Выбрать закладку Карта сигналов.

3 Вызвать контекстное меню и выбрать команду Создать канал....

4 В окне "Редактор канала" (рисунок 3.12) в поле *Имя:* задать имя канала, в поле *Описание:* текстовое описание канала.

5 Задать атрибуты канала с помощью элементов группы Параметры канала:

• В поле *"Адрес подчинённой станции"* – ввести адрес опрашиваемой станции (Server);

• В выпадающем списке "Код функции": выбрать тип запроса:

- Read Coils (01 (0x01));
- ♦ Read Discrete Inputs 02 (0x02);
- ♦ Read Holding Registers 03 (0x03);
- ♦ Read Input Registers (04 (0x04));
- ♦ Write Single Coil (05 (0x05));
- ♦ Write Single Register (06 (0x06));
- ♦ Write Multiple Coils (15 (0x0F));
- \diamond Write Multiple registers 16 (0x10).

В выпадающем списке справа выбрать тип данных. Набор допустимых типов данных определяется типом сегмента (таблица 3.5).

• С помощью счетчика *Стартовый адрес:* и *Количество данных:* установить начальный адрес блока данных и количество данных в блоке. При этом в поле *Конечный адрес*: отображается конечный адрес блока.

• В выпадающем списке "*Режим работы записи*": выбрать тип запроса по старту модуля:

◊ циклический опрос (по умолчанию): *Cyclic* – выдаётся в каждом цикле поллинга при обращении к станции;

♦ запрет выдачи запроса: *DenyRequest* – запрос не выдаётся, пока режим не будет изменён из задачи пользователя;

♦ выдача запроса только один раз: SingleRequest – запрос выдаётся только в первом цикле поллинга (может быть изменён из задачи пользователя);

• Для данных с типом в сегменте **Input Registers** или **Holding Registers**, при необходимости, можно установить флаги, изменяющие порядок байт в получаемых от подчинённого устройства данных:

◊ "Изменить порядок байтов" – устанавливается для изменения порядка последовательности байтов в значении сигнала с размером от двух байтов. Данное значение условно делится на слова (размер слова – два байта) и в каждом слове выполняется изменение последовательности байтов;

◊ "Изменить порядок слов" – устанавливается для изменения порядка слов в обратной последовательности в значении сигнала с размером от двух слов;

◇ Радиокнопка "Передавать сигнал всегда" позволяет запретить или разрешить выдачу сигнала в задачу пользователя при неизменном его значении после выполнения данного запроса.

6 Настроить параметры привязки и автонаименования:

• Нажать кнопку

Привязка и автоименование

• Задать шаблоны имен сигналов. Для выбора предопределенной последовательности

используется кнопка ..., а для предварительного просмотра результата – кнопка

Существующие форматы предопределенной последовательности для формирования имени сигнала представлены на рисунке 3.13 и описаны в таблице 3.6.

Если шаблон имени не задан, то глобальные переменные не формируются. При этом необходимо вручную смаппировать переменные (см. 2.7.1.4.2).

7 Нажать кнопку "ОК".

едактор канала			
Имя: Сhannel1 Описание:			
 Параметры канала Адрес подчиненной станции: 	255	2	BOOL
Код функции: Стартовый адрес:	ReadDiscreteInputs		Конечный адрес: 100
Количество данных: Режим работы записи:	100 Cyclic		🔿 hex 💿 dec
Сигнал управления записью: Изменить порядок байтов			
Изменить порядок слов Передавать сигнал всегда			
Привязка и автоименование			
Параметры привязки и автоименовани: Общие	a		
		-	
Шаблон имени:			Имя канала
Шаблон имени:			Имя канала Код сегмента (hex)
Шаблон имени:			Имя канала Код сегмента (hex) Код сегмента (dec)
Шаблон имени:	.		Имя канала Код сегмента (hex) Код сегмента (dec) Код сегмента (строка)
Шаблон имени:			Имя канала Код сегмента (hex) Код сегмента (dec) Код сегмента (строка) Тип данных (IEC 61131 Текущий адрес сиснал
Шаблон имени:			Имя канала Код сегмента (hex) Код сегмента (dec) Код сегмента (строка) Тип данных (IEC 61131 Текущий адрес сигнал Текущий адрес сигнал

Рисунок 3.13 – Модуль Server в МВТСРМ. Задание шаблона формирования имени сигнала

В результате будет создан канал с указанными атрибутами. Для просмотра сигналов канала следует перейти на закладку *Соотнесение входов/выходов* модуля **Server** – см. рисунок 3.14.

Server X						
Редактор параметр	ов Кар	та сигналов (🗮 Сос	отнесение вхо	дов/выходов) Состояние	🗼 Ин	формация
Каналы						
Переменная	Co	Канал	Адрес	Тип	Ед	Описание
🖙 🞑 Channels						
^K ø		Channel1_Control	%QB0	BYTE		
* ø		Channel2_Control	%QB1	BYTE		
**		Channel3_Control	%QB2	BYTE		
- * ø		Channel4_Control	%QB3	BYTE		
😟 🦄		Channel1	%IB148	ARRAY [1100] OF BOOL		
🍫		Channel1_Response	%IB248	BYTE		
🔳 ᡟ		Channel2	%IB249	ARRAY [110] OF BOOL		
		Channel2_Response	%IB259	BYTE		
🗐 🗄 🗝 🦄		Channel3	%IW130	ARRAY [1100] OF WORD		
V		Channel3_Response	%IB460	BYTE		
🗄 🦄		Channel4	%IW231	ARRAY [11] OF WORD		
*		Channel4_Response	%IB464	BYTE		
🖶 🚞 Diagnostics						
* >		Connect	%IB136	BYTE		Наличие связи мастера с модулем по соединению 1 (NumberConnection = 1
😑 📴 Statistics						
		CntConn	%ID35	UDINT		Счетчик установки соединения.
L		CntWErr	%ID36	UDINT		Счетчик неудачных попыток записи в подчиненное устройство

Контроллер программируемый логический Элсима

Рисунок 3.14 – Модуль Server. Отображение созданных сигналов канала

3.3.2.3 Настройка статистических и диагностических параметров и соотнесение сигналов

Модуль **Server** имеет набор диагностических и статистических сигналов, представленных в таблице 3.7.

Имя	Тип	Описание			
	Диаг	ностические сигналы			
Connect	BYTE	Наличие связи опрашивающего устройства с			
		подчиненным устройством по соединению 1:			
		-0 – соединение не установлено;			
		<i>– 1 –</i> соединение установлено			
Статистические сигналы					
CntConn	UDINT	Счетчик установки соединения. Отображает количество			
		удачных попыток установления связи с подчинённым			
		устройством (Server)			
CntWErr	UDINT	Счетчик неудачных попыток записи в подчинённое			
		устройство (увеличивается в случае неполучения			
		подтверждения от подчинённого устройства или при			
		получении команды записи от прикладного уровня, но			
		отсутствии соединения с подчинённым устройством)			

T-6 27	N <i>T</i>	a	π		
Гаолица 3.7	– Модуль	Server.	Диагностические и	статистические	сигналы

Настройка сигналов (см. 2.7.1.4.2) выполняется на закладке *Соотнесение входов/выходов* модуля Server (рисунок 3.14).

3.3.3 Рекомендации по работе с модулем МВТСРМ

Бывают случаи, когда есть необходимость зафиксировать факт получения входного сигнала с тем же значением, что и предшествующее. В обычной ситуации сигналы фиксируются только по изменению их значения, т.е. если протокол передает сигнал два раза с одним значением, то в задачу пользователя данный сигнал не проходит. К примеру, если **MBTCPM** считывает со **Slave** устройства регистр с одним и тем же значением, то входной сигнал с этим значением будет передан в задачу пользователя один раз, так как значение не изменяется. В таких случаях используется функциональный блок **MapIn**, который позволяет фиксировать факт прохожения сигнала независимо от идентичности значений (дополнительно при использовании ФБ **MapIn** для **MBTCPM** необходимо открыть «**Pedakmop каналов**» и поставить галочку напротив строки «Передавать сигнал всегда»). В случаях, если выходному сигналу присваиваются идентичные значения, модуль **МВТСРМ** передаст данные значения (HR, Coils) **Slave** устройству один раз. Для того, чтобы передавать выходные сигналы независимо от идентичности значений, применяется функциональный блок **MapOut**.

Ниже представлен код программы, иллюстрирующий работу функциональных блоков MapIn и MapOut:

PROGRAM PLC_PRG

VAR

(*MapIn*)

HrCmd_100 : INT; // Holding Register по адресу 100

hr100mapin : Elesy.MapIn(ADR(HrCmd_100)); // Объявление ФБ MapIn

myflaghr100: BOOL; (* Флаг, с помощью которого можно зафиксировать принятие сигнала *)

mycnthr100: INT; // Счетчик принятых сигналов (ПС)

hr43_100_mapout : elesy.MapOut(ADR(SICmd_43_100)); // Объявление ФБ MapOut

cmdSend : BOOL; // Переменная, отвечающая за передачу сигнала

Hr_100 : INT;

END_VAR

(*MapIn*)

hr100mapin(); // Вызов ФБ МарIn

myflaghr100 := hr100mapin.IsUpdate(); // Проверяем, принят ли сигнал

IF myflaghr100 = TRUE THEN // TRUE – сигнал зафиксирован

mycnthr100 := mycnthr100 + 1; (* Счетчик ПС увеличивается, если сигналы с одинаковыми значениями зафиксированы *)

END_IF

Hr_100 := HrCmd_100; // Считывется принятое значение

(*MapOut*)

hr43_100_mapout(); // Вызоб ФБ MapOut

SICmd_43_100[1] := 78; // Присваивание значения элементу массива

IF cmdSend = TRUE THEN (* Инициация передачи сигнала *)

hr43_100_mapout.control := 1; (* Установить поведение для однократной передачи данных выхода; 1 – сигнал будет передан *)

cmdSend := FALSE;

END_IF

Более подробное описание ФБ МарІп и МарОut представленно вОшибка! Источник ссылки не найден. Приложение Д.

3.4 Программный модуль Modbus TCP Slave

В данном подразделе представлено описание данных программного модуля с поддержкой протокола *Modbus TCP* в режиме **Slave**, обеспечивающего подключение до четырех опрашивающих устройств. Символьное обозначение модуля, используемое в сервисной программе – **MBTCPS**.

ВНИМАНИЕ! Параметры данного модуля доступны для просмотра, но пользователю не рекомендуется выполнять настройку данных параметров.

На рисунке 3.15 представлен вид закладки *Редактор параметров* программного модуля **мвтсрs** с информационными параметрами. Данные параметры не доступны для редактирования пользователем.

	PS 🗙 📑	IP 🕤 CommSlot					
едактор па	раметров 📮	🛎 Соотнесение входов/выходов 🛛 Состояние 🗍 🤹 Информация					
🔿 Инфор	мация Модуля	я					
Имя Значение Описание							
chname	mbtcps	Имя канала					
chnum	1	Номер канала					
chversion	1.0.0.0	Версия канала					
chdate	18.06.2015	Дата создания/изменения канала					
priority	11	Приоритет канала					
chdebug	135	Флаг отладки канала					
RealName	mbtcps	Имя канала фактическое					
RealSoft	0.0.0.1	Имя ПО фактическое					
RealDate	18.01.2016	Фактическая дата создания канала					
<u> </u>							
🔿 Конфи	гурационные	Параметры Модуля					
Имя	Значение	Описание					
DiagTimeO	ut 1	Таймаут выдачи диагностики, с					

Рисунок 3.15 – Модуль MBTCPS. Закладка *Редактор параметров*

На рисунке 3.16 представлен вид закладки *Соотнесение входов/выходов* программного модуля **МВТСРЅ** с диагностическими сигналами (см. описание сигналов в таблице 3.8).

MBTCP5 X								
Редактор параметров 🗮 Соотнесение входов/выходов Состояние 🤃 Информация								
Каналы								
Переменная	Co	Канал	Адрес	Тип	Описание			
🖃 🔯 Diagnostic								
*		cstatus	%ID19	UDINT	Статус работы канала			
🛱 🏘		chstat	%ID20		Статистика работы канала			
* >		rx_cnt	%ID20	UDINT	Счетчик принятых кадров			
		rx_bad_frames	%ID21	UDINT	Счетчик ошибок по приему кадров			
🍫		rx_double_frames	%ID22	UDINT	Счетчик принятых кадров дублем			
🍾		tx_cnt	%ID23	UDINT	Счетчик переданных кадров			
🍫		tx_bad_frames	%ID24	UDINT	Счетчик ошибок по передаче кадров			
¥ø		tx_double_frames	%ID25	UDINT	Счетчик переданных кадров дублем			
🖹 ᡟ		libstat	%ID26		Статистика работы библиотеки канала			
··· 🍾		rx_overflow	%ID26	UDINT	Счетчик переполнения входной передачи			
¥ø		tx_overflow	%ID27	UDINT	Счетчик переполнения выходной передачи			

Рисунок 3.16 – Модуль MBTCPS. Закладка Соотнесение входов/выходов

Таблица 3.8 – Модулі	Modbus TCP E	в режиме Slave.	Набор ди	иагностических	сигналов
----------------------	--------------	-----------------	----------	----------------	----------

Имя	Тип	Описание		
cstatus	UDINT	Текущее состояние работы канала. Допустимые		
		значения сигнала:		
		0 – нормальный режим работы;		
		<i>1</i> – ошибка работы канала		
chstat – статистика работы модуля (тип EleSyTypes.chstat):				
rx_cnt	UDINT	Счетчик принятых по сетевому соединению (каналу)		
		кадров		
rx_bad_frames	UDINT	Счетчик ошибок кадров (нарушение формата,		
		предусмотренного спецификацией) при выполнении		
		приёма		
rx_double_frames	UDINT	Счетчик принятых кадров дублем		
tx_cnt	UDINT	Счетчик переданных кадров		
tx_bad_frames	UDINT	Счетчик ошибок по передачи кадров		
tx_double_frames	UDINT	Счетчик переданных кадров дублем		
<i>libstat</i> – статистика работы библиотеки канала (тип EleSyTypes.libstat):				
rx_overflow	UDINT	Счетчик переполнения входной передачи		
tx_overflow	UDINT	Счетчик переполнения выходной передачи		

В данной версии сервисной программы конфигурирование базы сигналов и параметров работы осуществляется в программном модуле **Slave**, находящемся в "дереве" **MBTCPS** (описание программного модуля **Slave** см. в 3.4.1–3.4.3).

Модуль **Slave** предназначен для организации доступа к сигналам контроллера по протоколу *Modbus TCP/IP* с функциональностью сервера (Slave-устройства), позволяющего создать до 16-ти коммуникационных каналов. Символьное обозначение модуля, используемое в сервисной программе – **Slave**.

Программное обеспечение контроллера обеспечивает до четырех подключений опрашивающих устройств одновременно с возможностью принимать/передавать до 1000 сигналов.

Протокол *Modbus* оперирует битовыми значениями (ячейка – Coil и вход – Input) и 16-ти битными регистрами (регистр – Holding Register и входной регистр – Input Register).

Поддерживаемые контроллером функции Modbus представлены в таблице 3.9.

Код функции	Описание функции		
01 (0x01)	Read Coils (Чтение битовой ячейки)		
02 (0x02)	Read Discrete Inputs (Чтение битового входа)		
03 (0x03)	Read Holding Registers (Чтение содержимого регистров)		
04 (0x04)	Read Input Registers (Чтение содержимого входных регистров)		
05 (0x05)	Write Single Coil (Запись битовой ячейки)		
06 (0x06)	Write Single Register (Запись в единичный регистр)		
15 (0x0F)	Write Multiple Coils (Запись группы битовых ячеек)		
16 (0x10)	Write Multiple registers (Запись группы регистров)		

Таблица 3.9 – Поддерживаемые функции Modbus

В зависимости от результата выполнения операции, подчиненное устройство возвращает нормальный ответ на запрос либо ответ исключения. В нормальном ответе подчиненное устройство возвращает код функции первоначального запроса и запрошенные данные. Ответ исключения формируется, когда подчиненное устройство не может обработать запрос, и содержит в поле данных код исключения с объяснением причины возникшей ошибки. Поддерживаемые в контроллере коды исключений описаны в таблице 3.10.

Таблица 3.10 – Поддерживаемые коды исключения по протоколу Modbus

Код	Исключение	Описание		
01	ILLEGAL	Генерация при запросе клиентом функции, которая не поддерживается		
	FUNCTION	модулем		
02	ILLEGAL DATA	Генерация при обращении к несуществующим Modbus-регистрам		
02	ADDRESS			
03	ILLEGAL DATA	Генерация при попытке записи в регистр значения, несоответствующего		
		предусмотренному диапазону значений, или при запросе больше		
	VALUE	максимального объема данных		
06	SI AVE DEVICE	Генерация при невозможности немедленно обработать запрос. Например,		
	BUSV	при обработке команды записи, если предыдущая команда не		
	0001	завершилась (команда не передана в ЦП)		

Настройка работы серверного модуля **Slave** в системе *CoDeSys* состоит из следующих этапов:

1 Настройка конфигурационных параметров (см. 3.4.1).

2 Конфигурирование передачи данных по протоколу Modbus TCP Slave (см 3.4.2).

3 Соотнесение сигналов (см. 3.4.3).

3.4.1 Настройка конфигурационных параметров модуля Slave

Настройка конфигурационных параметров осуществляется на закладке просмотра и настройки модуля **Slave**. Для выполнения операции следует:

1 Открыть закладку просмотра и настройки модуля **Slave**, выделив имя модуля в дереве устройств и дважды нажав левую кнопку "мыши".

2 Перейти на закладку *Редактор параметров* (рисунок 3.17).

3 Настроить конфигурационные параметры модуля. Описание параметров представлено в таблице 3.11.

1	MBTCPS	IP	CommSlot Slave X SoftModules		
Ред	Редактор параметров 🛛 Карта сигналов 🛛 🗮 Соотнесение входов/выходов 🛛 Состояние 🚺 Информация				
🕟 Конфигурационные Параметры Модуля					
Им	я	Значение	Описание		
Se	rverAddress	1	Адрес подчиненного устройства		
Po	llTimeOut	10000	Таймаут на опрос станции, мс		

Рисунок 3.17	- Молуль Slave.	Заклалка	Редактор	параметров
I Heynok oll /	modymb brave.	занана	1 countrop	mapamempoo

Таблица 3.11 – Модуль Slave. Конфигурационные параметры

Имя	Значение "по умолчанию"	Описание
ServerAddress	1	Адрес подчиненного устройства. Если подчиненное
		устройство получило запрос с адресом, отличным от
		адреса, заданного в конфигурационных параметрах, то
		данный запрос игнорируется. Адрес "255" является
		"широковещательным", и при его установке все
		запросы, полученные через ТСР/ІР соединение
		с любым адресом, считаются корректными
PollTimeOut	10000	Тайм-аут на опрос станции (мс). Время, в течение
		которого ожидается хотя бы один запрос от Master
		станции. Если запрос не будет получен, то считается,
		что опросчик недоступен. Для быстрого перехода на
		резервный канал без ожидания истечения времени,
		предусмотренного <i>RFC793</i> , осуществляется
		принудительное закрытие ТСР/ІР соединения

3.4.2 Конфигурирование передачи данных по Modbus TCP Slave

3.4.2.1 Понятие коммуникационного канала

Формирование сигналов для чтения/записи данных по протоколу *Modbus TCP Slave* осуществляется через создание коммуникационного канала, описывающего один непрерывный блок данных. Каналы могут быть логически сгруппированы в секции.

Для работы с каналами и секциями используются следующие операции:

1 Создание канала (см. 3.4.2.2).

2 Редактирование (имени секции или атрибутов канала, в зависимости от контекста).

3 Копирование (для вставки в такой же модуль в конфигурации).

4 Удаление.

Для выполнения операции следует:

1 Вызвать закладку просмотра и настройки данных модуля, выделив имя модуля в дереве устройств и дважды нажав левую кнопку "мыши".

2 Выбрать закладку Карта сигналов.

3 Вызвать контекстное меню и выбрать соответствующую команду (рисунок 3.18).

Рисунок 3.18 - Модуль Slave. Общий вид контекстного меню
Канал имеет следующие атрибуты (рисунок 3.19):

• Имя – имя секции/канала. Задает условное наименование блока данных;

• Стартовый адрес – начальный адрес блока данных, расположенных в непрерывной области адресов. Для заданного адреса выбирается формат представления адреса – *hex* или *dec*;

• Количество данных – количество данных в блоке;

	MBTCPS	🕤 Slave 🗙							-
1	Редактор параметро	в (Карта сигналов)	📫 Соотнесение входов/выходо	состояние	🤹 Информация	1			
	Имя	Стартовый адрес 🛛 🖁	Соличество данн Сегмент	Тип данных	К Тип канала	Изменять порядок байт	Изменять порядок слов	Тип исключения при нецелостности	Описание
	Section1								
Ш	🦳 💋 Channel1	4	1 Discretes Inpu	ut BIT	Выходной	False	False	None	
I	🦾 🖋 Channel2	1	5 Coils	BIT	Выходной	False	False	None	

Рисунок 3.19 – Модуль Slave. Атрибуты коммуникационного канала

• *Сегмент* – типом сегмента определяется область хранения данных. Для заданного сегмента выбирается тип данных (таблица 3.12);

Таблица 3.12 – Допустимые типы данных в зависимости от типов сегментов

Тип данных	Discrete Inputs, Coils	Input Registers, Holding Registers
BOOL	+	+
BYTE	+	+
SINT	+	+
USINT	+	+
WORD	+	+
UINT	+	+
INT	+	+
DWORD	+	+
DINT	+	+
UDINT	+	+
LWORD	-	+
LINT	-	+
REAL	-	+
LREAL	_	+

• Тип данных;

• Тип канала – определяет доступ к данным со стороны опросчика:

□ входной канал – используется для записи данных в подчиненное устройство. (Сегменты Coils и HoldingRegisters);

□ выходной канал – используется для чтения данных из подчиненного устройства. (Сегменты DiscretesInputs, InputRegisters, Coils и HoldingRegisters).

Типы сегментов и принцип размещения данных представлены на рисунке 3.20.

Рисунок 3.20 – Модуль Slave. Типы сегментов и принцип размещения данных

• Изменять порядок байтов – устанавливается для изменения порядка последовательности байтов в значении сигнала с размером от 2 байтов. Данное значение условно делится на слова (размер слова – 2 байта), и в каждом слове выполняется изменение последовательности байтов;

• Изменять порядок слов – устанавливается для изменения порядка слов в обратной последовательности в значении сигнала с размером от 2 слов;

• *Тип исключения при нецелостности* – определяет целостное чтение/запись значения объекта, состоящего более чем из одного регистра *Modbus*;

• Описание.

При двойном нажатии левой кнопки "мыши" в области отображения значений любого атрибута открывается окно редактирования "**Редактор канала**", описание которого представлено в 3.4.2.2.

3.4.2.1.1 Назначение переменных и имен сигналам канала

При создании канала предоставляется возможность назначить сигналам новую или существующую переменную, а также возможность задать параметры для автоматического формирования имен структуры (автонаименования). Формирование имен осуществляется на основе шаблонов имен, представляющих собой произвольные комбинации служебных последовательностей (таблица 3.13) и обычных символов в соответствии с разрешенными в IEC 61131-3 символами для имен переменных.

Название	Обозначение	Пример	Описание	
Имя канала	%CHANNEL%	Channel3	Заданное имя канала	
Код сегмента (hex)	%PTYPE_X%	x03	Код сегмента данных	
Код сегмента (dec)	%STYPE_D%	03	в разных форматах	
Код сегмента (строка)	%STYPE_S%	HoldingRegisters		
Тип данных (IEC 61131-3)	%TYPE%	SIGNAL_REAL_T	Тип данных сигнала	
Текущий адрес сигнала (hex)	%CURADDR_X%	x01	Адрес сигнала	
Текущий адрес сигнала (dec)	%CURADDR_D%	1	в различных форматах	
Номер сигнала в канале (hex)	%NUM_X%	x0000	Номер сигнала в канале	
Номер сигнала в канале (dec)	%NUM_D%	0	в разных форматах	

Таблица 3.13 - Символьные последовательности для шаблонов имен

3.4.2.2 Порядок создания канала

Для создания канала следует:

- 1 Вызвать закладку просмотра и настройки данных модуля, выделив имя модуля **ModBusServer** в дереве устройств и дважды нажав левую кнопку "мыши".
- 2 Выбрать закладку *Карта сигналов*.
- 3 Вызвать контекстное меню и выбрать команду *Создать канал...*.
- 4 В окне "Редактор канала" (рисунок 3.21) в поле *Имя:* задать имя канала, в поле *Описание:* текстовое описание канала.

Редактор канала				
Имя:	OutputDataSet1 Измерительные	данные агрегата1		
Параметры канала —				
	Сегмент:	Discretes Input	~	WORD 🗸
c	тартовый адрес:	100	\$	🔿 hex 💿 dec
Кол	ичество данных:	3	*	Конечный адрес:
	Тип канала:	Выходной	~	147
Изменить	порядок байтов			
Измени	ть порядок слов			
Проверка цело	стности объекта			
Тип исключения при	и нецелостности	ILLEGAL_DATA_VALUE	~	
🔻 Привязка и автоиме	енование			
				ОК Отмена
			1.0	

Рисунок 3.21 – Модуль Slave. Создание канала

- 5 Задать атрибуты канала с помощью элементов группы Параметры канала:
 - 5.1 В списке Сегмент: выбрать тип сегмента данных:
 - DiscretesInputs;
 - Coils;
 - Holding Registers;
 - InputRegisters.

В выпадающем списке справа выбрать тип данных и формат значения с помощью переключателей *hex* и *dec*. Набор допустимых типов данных определяется типом сегмента (таблица 3.12).

- 5.2 С помощью счетчика *Стартовый адрес:* и *Количество данных:* установить начальный адрес блока данных и количество данных в блоке. При этом в поле *Конечный адрес*: отображается конечный адрес блока.
- 5.3 Для сегментов Coils и Holding Registers в списке *Тип канала:* выбрать тип канала.

- 5.4 Для данных в сегменте **Input Registers** или **Holding Registers** при необходимости установить флаги:
 - Изменить порядок байтов устанавливается для изменения порядка последовательности байтов в значении сигнала с размером от 2 байтов. Данное значение условно делится на слова (размер слова 2 байта), и в каждом слове выполняется изменение последовательности байтов;
 - Изменить порядок слов устанавливается для изменения порядка слов в обратной последовательности в значении сигнала с размером от двух слов.
- 5.5 Установить флаг **Проверка целостности объекта** для обеспечения целостного чтения/записи значения объекта, состоящего более чем из одного регистра *Modbus*.

При попытке опрашивающего устройства выполнить чтение/запись части значения сигнала, например – чтение только двух байт из четырехбайтного значения, то подчиненное устройство выдает один из кодов исключения, описанных в таблице 3.14.

Таблица 3.14 – Тип ис	ключения при нецелостности	объекта
-----------------------	----------------------------	---------

Тип	Код	Описание
ILLEGAL_	01	Недопустимая функция – полученный в запросе код функции не
FUNCTION		является допустимым для данного подчиненного устройства
ILLEGAL_DATA_	02	Недопустимый адрес данных – полученный в запросе адрес данных
ADDRESS		не является допустимым для данного подчиненного устройства
ILLEGAL_DATA_	<i>03</i>	Недопустимое значение – значение, содержащееся в поле данных
VALUE		запроса, является недопустимым для подчиненного устройства
SLAVE_DEVICE_F	04	Сбой подчиненного устройства – неисправимая ошибка, возникшая
AILURE		при попытке подчиненного устройства выполнить запрос
ACKNOWLEDGE	05	Квитирование – на обработку запроса требуется много времени.
		Данный ответ возвращается для предотвращения ошибки тайм-аута
		опрашивающего устройства
SLAVE_DEVICE_	06	Подчиненное устройство занято – подчиненное устройство
BUSY		задействовано в обработке продолжительного запроса. Следует
		ретранслировать запрос позже
MEMORY_PARITY	08	Ошибка четности памяти – подчиненное устройство пыталось
_ERROR		считать расширенную память, но выявило ошибку четности
		(паритета)
GATEWAY_PATH_	0A	Путь шлюза недоступен – указывает, что шлюз не смог локализовать
UNAVAILABLE		путь для выполнения запроса. Данный тип исключения указывает на
		то, что шлюз не сконфигурирован или перегружен
GATEWAY_	0B	Выбранный шлюз выдал ошибку при ответе – указывает на то, что от
TARGET_DEVICE_		конечного устройства не был получен ответ. Данный тип
FAILED		исключения указывает на то, что устройство не находится в сети

5.6 В выпадающем списке *Тип исключения при нецелостности* выбрать один из кодов исключений, представленных в таблице 3.14. Данный список доступен при выбранном флаге *Проверка целостности объекта*.

6 Настроить параметры привязки и автонаименования:

• Нажать <i>к</i>	нопку 🔽 📭	ивязка и ав	этоименование			
• Задать	шаблоны	имен	сигналов.	Для	выбора	предопределенной
последова	тельности	использ	уется кноп	ка 🛄,	а для	предварительного
просмотра	а результата	– кнопк	а Предпросмо	лр.		

Контроллер программируемый логический Элсима

Существующие форматы предопределенной последовательности для формирования имени сигнала представлены на рисунке 3.22 и описаны в таблице 3.13.

Если шаблон имени не задан, то глобальные переменные не формируются. При этом необходимо вручную смаппировать переменные.

7 Нажать кнопку "ОК".

Параметры привязки и автоименования Общие	
Шаблон имени:	 Имя канала Код сегмента (hex) Код сегмента (dec) Код сегмента (cтрока) Тип данных (IEC 61131) Текущий адрес сигнала (hex) Текущий адрес сигнала (dec) Номер сигнала в канале (hex) Номер сигнала в канале (dec)

Рисунок 3.22 – Модуль Slave. Задание шаблона формирования имени сигнала

В результате будет создан канал с указанными атрибутами. Для просмотра сигналов канала следует перейти на закладку *Соотнесение входов/выходов* модуля **Slave** – см. рисунок 3.23.

MBTCPS 🛛 🕤 Slave	×				▼		
Редактор параметров Карта с	игналов	辛 Соотнесени	е входов/в	ыходов (Состояние 🤳 Информация		
Каналы							
Переменная	Соот	Канал	Адрес	Тип	Описание		
🖃 🧀 Channels							
Application.PLC_P	~¢	Channel1_1	% QB0	Enumer	1x0005		
Application.pIoCo	~¢	Channel2_1	%QB1	Enumer	0x0002		
* @		Channel2_2	%QB2	Enumer	0x0003		
* @		Channel2_3	%QB3	Enumer	0x0004		
* @		Channel2_4	%QB4	Enumer	0x0005		
*		Channel2_5	%QB5	Enumer	0x0006		
🗐 🔤 Diagnostics							
🍫		Connect_1	%IB	BYTE	Наличие связи опрашивающего устройства с подчиненным устрой		
🍫		Connect_2	%IB	BYTE	Наличие связи опрашивающего устройства с подчиненным устрой		
*		Connect_3	%IB	BYTE	Наличие связи опрашивающего устройства с подчиненным устрой		
- *		Connect_4	%IB	BYTE	Наличие связи опрашивающего устройства с подчиненным устрой		
🖹 🞑 Statistics							
*		CntConn_1	%ID36	UDINT	Счетчик установки соединения. 1		
¥ø		CntConn_2	%ID37	UDINT	Счетчик установки соединения. 2		
*		CntConn_3	%ID38	UDINT	Счетчик установки соединения. З		
¥ø		CntConn_4	%ID39	UDINT	Счетчик установки соединения. 4		
*		CntWErrMst_1	%ID68	UDINT	Счетчик кадров, поступивших от опрашивающего устройства, на к		
¥ø		CntWErrMst_2	%ID69	UDINT	Счетчик кадров, поступивших от опрашивающего устройства, на к		
*		CntWErrMst_3	%ID70	UDINT	Счетчик кадров, поступивших от опрашивающего устройства, на к		
L 🎭		CntWErrMst_4	%ID71	UDINT	Счетчик кадров, поступивших от опрашивающего устройства, на ки		

Рисунок 3.23 – Модуль Slave. Отображение созданных сигналов канала

3.4.3 Настройка статистических и диагностических параметров и соотнесение сигналов

Модуль **Slave** имеет набор диагностических и статистических сигналов, представленных в таблице 3.15, где X = 1...4 (номер соединения).

$1 a_{1} a_$
--

Имя	Тип	Описание
	Диаг	ностические сигналы
Connect_X	BYTE	Наличие связи опрашивающего устройства с
		подчиненным устройством по соединению Х:
		– "0" – соединение не установлено;
		– "1" – соединение установлено
	Cma	тистические сигналы
CntConn_X	UDINT	Счетчик установки соединения Х. Отображает количество
		удачных попыток установления связи с потребителем
CntWErrMst_X	UDINT	Счетчик кадров, поступивших от опрашивающего
		устройства, на которые подчиненное устройство ответило
		исключением

Настройка сигналов выполняется на закладке *Соотнесение входов/выходов* модуля **Slave** (рисунок 3.23).

3.4.4 Рекомендации по работе с модулем МВТСРS

Бывают случаи, когда есть необходимость зафиксировать сам факт получения входного сигнала с тем же значением, что и предшествующее. В обычной ситуации сигналы фиксируются только по изменению их значения, т.е. если в **Slave** записывается сигнал два раза с одним значением, то в задаче пользователя нельзя определить факт записи одного и того же сигнала. В таких случаях используется функциональный блок **MapIn**, который позволяет фиксировать факт записи сигнала независимо от идентичности значений.

В случаях, если выходному сигналу присваиваются идентичные значения, модуль **MBTCPS** передаст данные значения (HR, Coils) **Slave** устройству один раз. Для того, чтобы передавать выходные сигналы независимо от идентичности значений, применяется функциональный блок **MapOut**.

Ниже представлен код программы, иллюстрирующий работу функциональных блоков **MapIn** и **MapOut**:

PROGRAM PLC_PRG

VAR

(*MapIn*)

HrCmd_100 : INT; // Holding Register по адресу 100

hr100mapin : Elesy.MapIn(ADR(HrCmd_100)); // Объявление ФБ MapIn

myflaghr100: BOOL; (* Флаг, с помощью которого можно зафиксировать принятие сигнала *)

mycnthr100: INT; // Счетчик принятых сигналов (ПС)

hr43_100_mapout : elesy.MapOut(ADR(SICmd_43_100)); // Объявление ФБ MapOut

cmdSend : BOOL; // Переменная, отвечающая за передачу сигнала

Hr_100 : INT;

END_VAR

(*MapIn*)

hr100mapin(); // Вызов ФБ MapIn

myflaghr100 := hr100mapin.IsUpdate(); // Проверяем, принят ли сигнал

IF myflaghr100 = TRUE THEN // TRUE – сигнал зафиксирован

mycnthr100 := mycnthr100 + 1; (* Счетчик ПС увеличивается, если сигналы с одинаковыми значениями зафиксированы *)

END_IF

Hr_100 := HrCmd_100; // Считывется принятое значение

(*MapOut*)

hr43_100_mapout(); // Вызоб ФБ MapOut

SICmd_43_100[1] := 78; // Присваивание значения элементу массива

IF cmdSend = TRUE THEN (* Инициация передачи сигнала *)

hr43_100_mapout.control := 1; (* Установить поведение для однократной передачи данных выхода; 1 – сигнал будет передан *)

cmdSend := FALSE;

END_IF

Более подробное описание ФБ **МарIn** и **МарOut** представленно в Приложение Д.

3.5 Программный модуль Modbus RTU Master

В данном подразделе представлено описание данных программного модуля с поддержкой протокола *Modbus RTU* в режиме **Master**.

Модуль с поддержкой протокола *Modbus* в режиме опросчика (**Master**) обеспечивает опрос до *16* подчиненных устройств по одному каналу связи. Название модуля в конфигурации – **МВМRTU**.

3.5.1 Общий принцип конфигурирования *Modbus RTU Master*

Конфигурирование протокола *Modbus RTU в режиме Master* разбивается на следующие шаги:

1 Добавление в дерево конфигурации модуля – мвмяти.

2 Добавление в дерево конфигурации для модуля **МВМRTU** опрашиваемые подчиненные устройства – **МВМRTUServer** (Slave).

3 Добавление для каждого подчиненные устройства **MBMRTUServer** (Slave) карты опроса.

4 Связывание сигналов модулей **МВМRTU** и **МВМRTUServer** (Slave) с пользовательскими данными.

5 Настройка параметров физического интерфейса *RS-485* и связывание его с модулем **мвмтти** (см. 3.13.2).

3.5.2 Настройка модуля MBMRTU

Настройка модуля **МВМRTU** выполняется в системе *CoDeSys*, на закладке просмотра и настройки модуля **МВМRTU**. Для выполнения операции следует:

1 Открыть закладку просмотра и настройки модуля **мвмяти**, выделив имя модуля в дереве устройств и дважды нажав левую кнопку "мыши".

едактор пај	раметров 📮	Соотнесение входов/выходов Состояние 10 Информация					
🔨 Инфорг	иация Модуля	Ê					
Имя	Значение	Описание					
chname	mbmrtu	Имя канала					
chnum	1	Номер канала					
chversion	1.0.0.0	Версия канала					
chdate	18.06.2015	Дата создания/изменения канала					
priority	11	Приоритет канала					
chdebug 135		Флаг отладки канала					
RealName no data		Имя канала фактическое					
RealSoft no data		Имя ПО фактическое					
RealDate	no data	Фактическая дата создания канала					
🔊 Конфиг	VDAUMOHHEIP	Папаметоы Молуло					
Имя	Значе	ние Описание					
DiagTimeO	ıt 10	00 Таймаут выдачи диасностики, мс					

2 Перейти на закладку Редактор параметров (рисунок 3.24).

Рисунок 3.24 – Модуль МВМRTU. Закладка Редактор параметров

3 Выполнить настройку параметров модуля:

• информационные параметры – общая информация о программном модуле (параметры не доступны для редактирования пользователем). Описание параметров представлено в таблице 3.16.

Имя	Значение "по умолчанию"	Описание
chname	mbmrtu	Имя канала
chnum	1	Номер канала
chversion	1.0.0.0	Версия канала
chdate	DD.MM.YY	Дата создания, изменения канала в формате день месяц год
priority	11	Приоритет канала
chdebug	135	Флаг отладки канала
RealName	no data	Имя канала фактическое
RealSoft	no data	Имя ПО фактическое
RealDate	no data	Фактическая дата создания канала

• конфигурационные параметры модуля описаны в таблице 3.17.

Таблица 3.17 - Модуль МВМКТU. Конфигурационные параметры

Имя	Значение "по	Описание				
	умолчанию''					
DiagTimeOut	1000	Период	времени	для	выдачи	диагностической
		информации о работе модуля в систему				

На рисунке 3.25 представлен вид закладки *Соотнесение входов/выходов* программного модуля **МВМТТU** с диагностическими сигналами. Сигналы диагностики

являются системными (необходимы на этапе отладки программного обеспечения) и в настоящем руководстве не описываются.

_							
	MBMRTU 🗙						
ſ	Редактор параметров	辛 Соотнесен	ие входов/в	зыходов Сс	стояние	🕕 Инфор	мация
	Каналы						
	Переменная	Соотнесение	Канал	Адрес	Тип	Единица	Описание
I	🖃 📴 Diagnostic						
I	¥ø		cstatus	%ID19	UDINT		Статус работы канала
I	😐 🦄		chstat	%ID20			Статистика работы канала
I	😟 🦄		libstat	%ID26			Статистика работы библиотеки канала

Рисунок 3.25 - Модуль МВМЯТИ. Закладка Соотнесение входов/выходов

3.5.3 Модуль MBMRTUServer (Slave) (для Modbus RTU Master)

Модуль **MBMRTUServer** (Slave) предназначен для организации доступа к сигналам контроллера по протоколу *Modbus RTU*. Символьное обозначение модуля, используемое в сервисной программе – **MBMRTUServer** (Slave).

Для модуля **МВТСРЅ** можно добавить до *16* устройств, опрашиваемых последовательно, с возможностью принимать/передавать до *1000* сигналов.

Протокол *Modbus* оперирует битовыми значениями (ячейка – Coil и вход – Input) и 16-ти битными регистрами (регистр – Holding Register и входной регистр – Input Register).

Поддерживаемые модуля **мвмяти** функции *Modbus* представлены в таблице 3.18.

Код функции	Описание функции
01 (0x01)	Read Coils (Чтение битовой ячейки)
02 (0x02)	Read Discrete Inputs (Чтение битового входа)
03 (0x03)	Read Holding Registers (Чтение содержимого регистров)
04 (0x04)	Read Input Registers (Чтение содержимого входных регистров)
05 (0x05)	Write Single Coil (Запись битовой ячейки)
06 (0x06)	Write Single Register (Запись в единичный регистр)
15 (0x0F)	Write Multiple Coils (Запись группы битовых ячеек)
16 (0x10)	Write Multiple registers (Запись группы регистров)

Таблица 3.18 – Поддерживаемые функции Modbus

В зависимости от результата выполнения операции, подчиненное устройство возвращает нормальный ответ на запрос либо ответ исключения. В нормальном ответе подчиненное устройство возвращает код функции запроса и запрошенные данные. Ответ исключения формируется, когда подчиненное устройство не может обработать запрос, и содержит в поле данных код исключения с объяснением причины возникшей ошибки.

Настройка работы модуля **MBMRTUServer** (Slave) в системе *CoDeSys* состоит из следующих этапов:

1 Настройка конфигурационных параметров (см. 3.4.1).

2 Конфигурирование базы сигналов для протокола Modbus RTU (см 3.4.2).

3 Соотнесение сигналов (см. 3.4.3).

3.5.4 Настройка конфигурационных параметров модуля MBMRTUServer (Slave)

Настройка конфигурационных параметров осуществляется на закладке просмотра и настройки модуля **MBMRTUServer** (Slave). Для выполнения операции следует:

1 Открыть закладку просмотра и настройки модуля **MBMRTUServer** (Slave), выделив имя модуля в дереве устройств и дважды нажав левую кнопку "мыши".

2 Перейти на закладку Редактор параметров (рисунок 3.26).

3 Настроить конфигурационные параметры модуля. Описание параметров представлено в таблице 3.19.

MBMRTU		BMRTUServer X				
Редактор параме	етров Карт	а сигналов 🛛 🗮 Соотнесение входов/выходов 🛛 Состояние 🚺 Информация				
🔿 Конфигура	ционные Пар	раметры Модуля				
Имя	Значение	Описание				
ServerAddress	1	Адрес ведомого устройства				
Answer_TO	1000	Таймаут ожидания ответа от ведомого устройства, мс				
MaxRep	3	Количество повторных запросов к ведомому устройству в случае отсутствия ответа.				
Preambula_TO	20000	Пауза перед началом запроса к ведомому устройству, мкс				

Рисунок 3.26 – Модуль MBMRTUServer (Slave). Закладка Редактор параметров

Таблица З	3.19 –	• Модуль	MBMRTUServer	(Slave)	. Конфиг	урационные	параметр	эы
								-

Имя	Значение "по	Описание
	умолчанию''	
ServerAddress	1	Адрес ведомого устройства, для которого создаётся конфигурация
Answer_TO	100	Тайм-аут ответа (задаётся в мс). Время, в течение которого ожидается ответ ведомого устройства. Отсчёт времени начинается после выдачи запроса
MaxRep	3	Количество повторов. Число повторений запроса к устройству в случае истечения тайм-аута на ответ
Preambula_TO	20000	Пауза перед началом запроса к ведомому устройству, мкс

3.5.5 Конфигурирование базы сигналов протокола *Modbus RTU* для ведомого устройства

3.5.5.1 Понятие коммуникационного канала

Формирование сигналов для чтения/записи данных по протоколу *Modbus RTU* осуществляется через создание коммуникационного канала, описывающего один непрерывный блок данных. Каналы могут быть логически сгруппированы в секции.

Для работы с каналами и секциями используются следующие операции:

1 Создание канала/секции.

- 2 Редактирование (имени секции или атрибутов канала в зависимости от контекста).
- 3 Копирование (для вставки в такой же модуль в конфигурации).

4 Удаление.

Для выполнения операции следует:

1 Вызвать закладку просмотра и настройки данных модуля, выделив имя модуля в дереве устройств и дважды нажав левую кнопку "мыши".

2 Выбрать закладку Карта сигналов.

3 Вызвать контекстное меню и выбрать соответствующую команду (рисунок 3.27).

	Создать секцию
A	Создать канал
Ж	Вырезать
	Копировать

Рисунок 3.27 – Модуль MBMRTUServer (Slave). Общий вид контекстного меню

Канал имеет следующие атрибуты (рисунок 3.28):

• Имя – имя секции/канала. Задает условное название блока данных;

• Стартовый адрес – начальный адрес блока данных, расположенных в непрерывной области адресов. Для заданного адреса выбирается формат представления адреса – *hex* или *dec*;

• Количество данных – количество данных в блоке;

актор параметров	(арта сигналов 🛛 🗮 Соо	тнесение входов/выходов Сост	ояние 🛛 🤍 Информаци	1	
Імя	Стартовый адрес	Количество данных Сегмент	Тип данных	Тип канала	Описание
🗁 Section1					
🦳 🔗 Channel1	1	10 Discretes	Input BIT	Входной	
🥖 Channel2	1	100 Coils	BIT	Входной	
- 🥖 Channel3	1	100 Input Reg	isters WORD	Входной	

Рисунок 3.28 – Модуль MBMRTUServer (Slave). Атрибуты коммуникационного канала

• *Сегмент* – типом сегмента определяется область хранения данных. Для заданного сегмента выбирается тип данных (таблица 3.20);

• Тип данных;

Таблица 3.20 - Допустимые типы данных в зависимости от типов сегментов

Тип данных	Discrete Inputs, Coils	Input Registers, Holding Registers
BOOL	+	-
WORD	-	+
UINT	-	+
INT	-	+
DWORD	-	+
DINT	-	+
UDINT	-	+
REAL	_	+

• Тип канала – определяет доступ к данным со стороны опросчика:

□ входной канал – используется для записи данных в подчиненное устройство. (Сегменты Coils и HoldingRegisters);

□ выходной канал – используется для чтения данных из подчиненного устройства. (Сегменты DiscretesInputs, InputRegisters, Coils и HoldingRegisters).

Типы сегментов и принцип размещения, в зависимости от типа, приведены на рисунке 3.20.

При двойном нажатии левой кнопки "мыши" в области отображения значений любого атрибута открывается окно редактирования "**Редактор канала**", описание которого представлено в 3.5.5.3.

3.5.5.2 Назначение переменных и имен сигналам канала

При создании канала предоставляется возможность назначить сигналам новую или существующую переменную, а также возможность задать параметры для автоматического формирования имен структуры (автонаименования). Формирование имен осуществляется на основе шаблонов имен, представляющих собой произвольные комбинации служебных последовательностей (таблица 3.21) и обычных символов в соответствии с разрешенными в IEC 61131-3 символами для имен переменных.

Название	Обозначение	Пример	Описание	
Имя канала	%CHANNEL%	Channel3	Заданное имя канала	
Код сегмента (hex)	%PTYPE_X%	x03	Код сегмента данных в	
Код сегмента (dec)	%STYPE_D% 03		разных форматах	
Код сегмента (строка)	%STYPE_S%	HoldingRegisters		
Тип данных (IEC 61131-3)	%TYPE%	SIGNAL_REAL_T	Тип данных сигнала	
Текущий адрес сигнала (hex)	%CURADDR_X%	x01	Адрес сигнала в	
Текущий адрес сигнала (dec)	%CURADDR_D%	1	различных форматах	
Номер сигнала в канале (hex)	%NUM_X%	x0000	Номер сигнала в канале в	
Номер сигнала в канале (dec)	%NUM_D%	0	разных форматах	

Таблица 3.21 - Символьные последовательности для шаблонов имен

3.5.5.3 Порядок создания канала

Для создания канала следует:

1 Вызвать закладку просмотра и настройки данных модуля, выделив имя модуля **ModBusServer** в дереве устройств и дважды нажав левую кнопку "мыши".

2 Выбрать закладку Карта сигналов.

3 Вызвать контекстное меню и выбрать команду Создать канал....

4 В окне "Редактор канала" (рисунок 3.29) в поле *Имя:* задать имя канала, в поле *Описание:* текстовое описание канала.

Редактор канала	×
Имя: PressVal	
Описание:	
Параметры канала	-11
Код функции: ReadInputRegisters	
Тип данных: UINT	
Стартовый адрес: 100 😴 Конечный адрес:	
Количество данных: 4 📑 103	
Режим работы записи в карте опроса: Сусііс	
Сигнал управления строкой 🔽 С hex 💿 dec	
▲ Привязка и автоименование	
Параметры привязки и автоименования Общие Шаблон имени для структуры в целом: SI_1_%CHANNEL%%CURADDR_D% 💌 Предпросмотр	
ОК Отмена	

Рисунок 3.29 – Модуль MBMRTUServer (Slave). Создание канала

5 Задать атрибуты канала с помощью элементов группы Параметры канала.

- 5.1 В списке *Код функции:* выбрать соответствующую функцию для выполнения транзакции:
- □ ReadDiscretesInputs;
- □ ReadCoils;
- □ WriteSingleCoils;
- **u** WriteMultipleCoils;
- **ReadInputRegisters**;
- **D** ReadHolding Registers;
- □ WriteSingleHolding Registers;
- □ WriteMultipleHolding Registers.
 - 5.2 В выпадающем списке *Тип данных:* выбрать необходимый тип данных. Набор допустимых типов данных определяется типом сегмента (таблица 3.20).
 - 5.3 С помощью счетчика *Стартовый адрес:* и *Количество данных:* установить начальный адрес блока данных и количество данных в блоке. При этом в поле *Конечный адрес:* отображается конечный адрес блока. Переключателем *hex* и *dec* можно выбрать формат значения для отображения адресов.
 - 5.4 Тип канала: выбрается автоматически.

Для каждого канала создаётся отдельная запись в таблице опроса подчинённого устройства. Она определяет параметры транзакции (запроса на чтение или запись) *Modbus*.

Строка таблицы опроса, содержащая запись, может находиться в одном из трёх режимов работы:

- Выдача каждый цикл поллинга ("Cyclic");
- Запрет выдачи ("DenyRequest");
- Выдача один раз ("SingleRequest").

С помощью параметра *Режим работы записи в карте опроса* необходимо установить режим, требуемый для этой строки опроса по старту программы. По умолчанию используется режим *Cyclic* и запрос будет выдаваться в каждом цикле поллинга.

Модуль поддерживает функцию динамического изменения таблицы опроса в процессе работы программы ПЛК. Это может потребоваться, например, для уменьшения времени доставки данных путём исключения из опроса редко изменяющихся сигналов или сигналов, получаемых по другим каналам в схемах с резервированием. Особенно это будет важно и рекомендуется использовать для больших таблиц опроса. Если функция изменения режима выдачи транзакций *Modbus* востребована в программе, то необходимо создать *Сигнал управления строкой таблицы опроса*, установкой соответствующего флага. При этом будет автоматически создан сигнал управления, связанный с этим каналом по имени (*NAME_PollCtrl* во вкладке соотнесения входов/выходов).

В процессе работы программы для изменения режима необходимо присвоить соответствующий код для этого управляющего сигнала:

- "0" перевод в режим Выдача каждый цикл поллинга;
- "1" перевод в режим Запрет выдачи;
- "2" перевод в режим Выдача один раз.

6 Настроить параметры привязки и автонаименования:

6.1 Нажать кнопку	🔻 Привязка и авто	оименование		
6.2 Задать шабло	оны имен	сигналов. Д	ля выбора	предопределенной
последовательн	ности использ	уется кнопка	, а для	предварительного
просмотра резу	/льтата — кнопка	Предпросмотр	J.	

Существующие форматы предопределенной последовательности для формирования имени сигнала представлены на рисунке 3.30 и описаны в таблице 3.21.

Если шаблон имени не задан, то глобальные переменные не формируются. При этом необходимо вручную смаппировать переменные (см. 2.7.1.4.2).

7 Нажать кнопку "ОК".

Тараметры привязки и автоименования Общие	
Шаблон имени:	✓ Имя канала Код сегмента (hex)
	Код сегмента (dec) Код сегмента (строка)
	Текущий адрес сигнала (hex) Текущий адрес сигнала (dec)
	Номер сигнала в канале (hex) Номер сигнала в канале (dec)
	Индекс элемента в массиве

Рисунок 3.30 – Модуль MBMRTUServer (Slave). Задание шаблона формирования имени сигнала

В результате будет создан канал с указанными атрибутами. Для просмотра сигналов канала следует перейти на закладку *Соотнесение входов/выходов* модуля **MBMRTUServer** (Slave) (см. рисунок 3.31).

едактор параметров	Карта с	игналов 🗮 Соотне	сение входов/	выходов Состояние 🤳	Информа	ация
аналы						
Переменная	Co	Канал	Адрес	Тип	Ед	Описание
🗧 🛄 Channels						
^K ø		Channel3_PollCtrl	%QB15	BYTE		
🚊 🞑 Section1						
···· *ø		Channel1_PollCtrl	%QB16	BYTE		
Kø		Channel2_PollCtrl	%QB17	BYTE		
😟 🦄		Channel1	%IB1301	ARRAY [110] OF BOOL		
··· 🍫		Channel1_PollResp	%IB1311	BYTE		
😟 👋		Channel2	%IB1312	ARRAY [1100] OF BOOL		
¥ø		Channel2_PollResp	%IB1412	BYTE		
😟 🍫		Channel3	%IW550	ARRAY [1100] OF WORD		
🍫		Channel3_PollResp	%IB1300	BYTE		
🗆 🚞 Diagnostics						
i 🍫		Connect	%IB1064	BYTE		Состояние связи (0 - нет опроса; 1 - идет опрос).
- 🚞 Statistics						
🍫		ConnectCnt	%ID267	UDINT		Счетчик установлений соединения.
···· 🍫		CntTxRead	%ID268	UDINT		Количество выданных запросов на чтение данных.
🍫		CntTxWrite	%ID269	UDINT		Количество выданных запросов на запись данных.
···· 🍫		CntRx	%ID270	UDINT		Количество полученных ответов на запрос
🍫		CntRxExcept	%ID271	UDINT		Количество полученных ответов Exception
🍫		CntCRCErr	%ID272	UDINT		Количество сброшенных кадров по несовпадению CRC
🍫		CntTimeOutErr	%ID273	UDINT		Количество ошибок по таймауту считая с последней удачной установки
×		CntPollCmplt	%ID274	UDINT		Количество завершенных проходов по таблице опроса

Рисунок 3.31 – Модуль MBMRTUServer (Slave). Отображение созданных сигналов канала

3.5.6 Настройка статистических и диагностических параметров и соотнесение сигналов

Модуль **MBMRTUServer** (Slave) имеет набор статистических сигналов, представленных на рисунке 3.31. Сигналы диагностики и статистики описаны в таблице 3.22.

Таблица 3.22 – Модуль MBMRTUServer (Slave). Диагностические и статистические сигналы

Имя	Тип	Описание			
	Диагностические сигналы				
Connect	BYTE	Наличие связи с опрашиваемым устройством:			
		0 – соединение не установлено;			
		1 – соединение установлено			
	Стат	гистические сигналы			
ConnectCnt	UDINT	Счетчик установлений соединения			
CntTxRead	UDINT	Количество выданных запросов на чтение данных			
CntTxWrite	UDINT	Количество выданных запросов на запись данных			
CntRx	UDINT	Количество полученных ответов на запрос			
CntRxExcep	UDINT	Количество полученных ответов Exception			
CntCRCErr	UDINT	Количество сброшенных кадров по несовпадению CRC			
	UDINT	Количество ошибок по тайм-ауту, считая с последней			
ChiTimeOulErr	UDINI	удачной установки связи с подчиненным устройством			
CntPollCmplt	UDINT	Количество завершенных проходов по таблице опроса			

3.5.7 Рекомендации по работе с модулем MBMRTU

1. В случаях, если выходному сигналу присваиваются идентичные значения, модуль **МВТСРМ** передаст данные значения (HR, Coils) **Slave** устройству один раз. Для того, чтобы передавать выходные сигналы независимо от идентичности значений, применяется функциональный блок **MapOut**.

Ниже представлен код программы, иллюстрирующий работу функционального блока MapOut:

PROGRAM PLC_PRG

VAR

hr43_100_mapout : elesy.MapOut(ADR(SlCmd_43_100)); // Объявление ФБ MapOut cmdSend : BOOL; // Переменная, отвечающая за передачу сигнала END_VAR

(*MapOut*)

hr43_100_mapout(); // Вызоб ФБ MapOut

SICmd_43_100[1] := 78; // Присваивание значения элементу массива

IF cmdSend = TRUE THEN (* Инициация передачи сигнала *)

hr43_100_mapout.control := 1; (* Установить поведение для однократной передачи данных выхода; 1 – сигнал будет передан *)

cmdSend := FALSE;

END_IF

Более подробное описание ФБ **марOut** представленно в Приложение Д.

2. В реальных условиях взаимодействие модуля **мвмкти** осуществляется с подчиненными устройствами различных производителей, которые имеют свои особенности работы. При работе рекомендуется обращать внимание на сигналы диагностики и статистики, приведенные в таблице 3.22. В случае изменения счетчиков ошибок приема данных, следует увеличить преамбулу перед передачей ответа на запрос со стороны подчиненного устройства до 20 мс.

3.6 Программный модуль Modbus RTU Slave

В настоящем подразделе представлено описание данных программного модуля с поддержкой протокола *Modbus RTU* в режиме *Slave* (**Server**).

Наименование модуля в конфигурации – **мвятиз**.

Поддержка протокола *Modbus RTU Slave* в модуле **мвятиs** имеет следующие особенности:

• модуль **MBRTUS** поддерживает только адресные транзакции (не поддерживает **Broadcast**-запросы).

• модуль поддерживает следующие типы исключений *Modbus*:

 \diamond (0x1) ILLEGAL FUNCTION;

(0x2) ILLEGAL DATA ADDRESS;

 \diamond (0x6) SLAVE DEVICE BUSY;

• поддерживаемые модулем **MBRTUS** функции *Modbus* представлены в таблице 3.23.

Таблица 3.23 – Поддерживаемые функции Modbus

Код функции	Описание функции
01 (0x01)	Read Coils (Чтение битовой ячейки)
02 (0x02)	Read Discrete Inputs (Чтение битового входа)
03 (0x03)	Read Holding Registers (Чтение содержимого регистров)
04 (0x04)	Read Input Registers (Чтение содержимого входных регистров)
05 (0x05)	Write Single Coil (Запись битовой ячейки)
06 (0x06)	Write Single Register (Запись в единичный регистр)
15 (0x0F)	Write Multiple Coils (Запись группы битовых ячеек)
16 (0x10)	Write Multiple registers (Запись группы регистров)

3.6.1 Общий принцип конфигурирования Modbus RTU Slave

Конфигурирование протокола *Modbus RTU* в режиме *Slave* разбивается на следующие шаги:

1 Добавление в дерево конфигурации модуля – **МВRTUS**.

2 Добавление в дерево конфигурации для модуля **MBRTUS** – опрашиваемое подчиненное устройство **Server**.

3 Настройка параметров модулей MBRTUS и Server.

4 Добавление для подчиненного устройства Server карты опроса.

5 Связывание сигналов модулей **MBRTUS** и **Server** с пользовательскими данными.

6 Настройка параметров физического интерфейса *RS-485* и связывание его с модулем **МВRTUS** (см. 3.13.2).

3.6.2 Настройка модуля MBRTUS

Настройка модуля **MBRTUS** выполняется в системе *CoDeSys* на закладке просмотра и настройки модуля **MBRTUS**. Для выполнения операции следует:

1 Открыть закладку просмотра и настройки модуля **MBRTUS**, выделив имя модуля в дереве устройств и дважды нажав левую кнопку "мыши".

2 Перейти на закладку Редактор параметров (см. рисунок 3.32).

едактор па	араметров	🗮 Соотнесение входов/выходов 🛛 Состояние 🛛 🌵 Информация					
🔊 Инфор	мация Моду.	ля					
Имя	Значение	Описание					
ChName	mbrtus	Имя канала					
ChNum	1	Номер канала					
ChVersion	1.0.0.0	Версия канала					
ChDate	16.02.2016	Дата создания/изменения канала					
Priority	11	Приоритет канала					
ChDebug	135	Флаг отладки канала					
RealName	no data	Имя канала фактическое					
RealSoft	no data	Имя ПО фактическое					
RealDate	no data	Фактическая дата создания канала					
License	no data	Наличие лицензии (0 - отсутствует, 1 - присутствует)					
Koutu							
Конфи	Эчечения						

Рисунок 3.32 – Модуль MBRTUS. Закладка Редактор параметров

3 Выполнить настройку параметров модуля:

• информационные параметры – общая информация о программном модуле (параметры не доступны для редактирования пользователем). Описание параметров представлено в таблице 3.24.

Таблица	3.24 -	- Модуль	MBRTUS.	Инфо	рмационные	данные
---------	--------	----------	---------	------	------------	--------

Имя	Значение "по	Описание			
	умолчанию''				
ChName	mbrtus	Имя канала			
ChNum	1	омер канала			
ChVersion	1.0.0.0	ерсия канала			
ChDate	DD.MM.YY	Дата создания/изменения канала в формате день.месяц.год			
Priority	11	Приоритет канала			
ChDebug	135	Флаг отладки канала			
RealName	no data	Имя канала фактическое			
RealSoft	no data	Имя ПО фактическое			
RealDate	no data	Фактическая дата создания канала			
License	no data	Наличие лицензии (0 – отсутствует, 1 – присутствует)			

• конфигурационные параметры модуля описаны в таблице 3.25.

Таблица 3.25 - Модуль MBRTUS. Конфигурационные параметры

Имя	Значение "по умолчанию"	Описание
DiagTimeOut	1000	Период времени для выдачи диагностической информации о работе модуля в систему, мс

На рисунке 3.33 представлен вид закладки *Соотнесение входов/выходов* программного модуля **MBRTUS** с диагностическими сигналами. Сигналы диагностики являются системными (необходимы на этапе отладки программного обеспечения) и в настоящем руководстве не описываются.

Редактор параметров 🛛 🗮 Соотн	несение входов;	выходов	Состояние	🧼 Инфо	ормация	
Каналы						
Переменная	Соотнесение	Канал	Адрес	Тип	Единица	Описание
🖃 🚞 Diagnostic						
*		cstatus	%ID25	UDINT		Статус работы канала
🕀 🎽		chstat	%ID26			Статистика работы канала
±		libstat	%ID32			Статистика работы библиотеки канала

Рисунок 3.33 – Модуль MBRTUS. Закладка Соотнесение входов/выходов

3.6.3 Модуль Server

Модуль **Server** предназначен для организации доступа к сигналам контроллера по протоколу *Modbus RTU*. Символьное обозначение модуля, используемое в сервисной программе – **Server**.

Максимальное количество сигналов в карте опроса модуля Server – 1000.

Настройка работы модуля Server в системе *CoDeSys* состоит из следующих этапов:

1 Настройка конфигурационных параметров (см. 3.6.4).

2 Конфигурирование карты опроса по протоколу Modbus RTU (см. 3.6.5).

3 Соотнесение сигналов (см. 3.6.5.2).

3.6.4 Настройка конфигурационных параметров модуля Server

Настройка конфигурационных параметров осуществляется на закладке просмотра и настройки модуля **Server**. Для выполнения операции следует:

1 Открыть закладку просмотра и настройки модуля **Server**, выделив имя модуля в дереве устройств и дважды нажав левую кнопку "мыши".

2 Перейти на закладку Редактор параметров (рисунок 3.34).

3 Настроить конфигурационные параметры модуля. Описание параметров представлено в таблице 3.26.

MBRTUS	Serve	er X				
Редактор параметр	ов Карта о	сигналов 🗮 Соотнесение входов/выходов Состояние 🎄 Информация				
🔿 Конфигурацие	онные Парам	метры Модуля				
Имя	Значение	Описание				
Address	1	Адрес ведомого устройства				
ConnectTA	1000	Таймаут на определение опроса подчиненной станции, мс				
SigBaseException	Disable	Выдавать исключение (код 0х06) при чтении данных, которые еще не были проинициализированы				
Preambula_TO	20000	Пауза перед началом ответа от ведомого устройства, мкс				

Рисунок 3.34 – Модуль Server. Закладка *Редактор параметров*

Имя	Значение "по	Описание
	умолчанию''	
Address	1	Адрес ведомого устройства, для которого создаётся конфигурация. Диапазон изменения параметра – от <i>1</i> до 247
ConnectTA	1000	Тайм-аут на определение опроса подчиненной станции, мс. Диапазон изменения параметра – от 100 до 10000 мс
SigBaseExeption	Disable	Выдавать исключение (код 0x06) при запросе данных, которые еще не были проинициализированы (<i>Enable/Disable</i>)
Preambula_TO	20000	Пауза перед началом ответа от ведомого устройства (измеряется в мкс). Диапазон изменения параметра – от 0 до 65535 мкс

Таблица	3.26 -	- Модуль	Server.	Конфигу	рационные	парамет	ры
,		· · · ·		•/			

3.6.5 Конфигурирование карты опроса по протоколу Modbus RTU

3.6.5.1 Понятие коммуникационного канала

Формирование сигналов для чтения/записи данных по протоколу *Modbus RTU* осуществляется через создание коммуникационного канала, описывающего один непрерывный блок данных. Каналы могут быть логически сгруппированы в секции.

Для работы с каналами и секциями используются следующие операции:

1 Создание канала/секции.

2 Редактирование (имени секции или атрибутов канала в зависимости от контекста).

3 Копирование (для вставки в такой же модуль в конфигурации).

4 Удаление.

Для выполнения операции следует:

1 Вызвать закладку просмотра и настройки данных модуля, выделив имя модуля в дереве устройств и дважды нажав левую кнопку "мыши".

2 Выбрать закладку Карта сигналов.

3 Вызвать контекстное меню и выбрать соответствующую команду (рисунок 3.35).

Рисунок 3.35 - Модуль Server. Общий вид контекстного меню

Канал имеет следующие атрибуты (см. рисунок 3.36):

• Имя – имя секции/канала. Задает условное название блока данных;

• *Стартовый адрес* – начальный адрес блока данных, расположенных в непрерывной области адресов;

• Количество данных – количество данных в блоке;

MORTOS	_ U						4
едактор параме	тров	Карта сигналов	🗮 Соотнесение	входов/выходов	Состояние	🔱 Информация	
Имя	Ста	ртовый ад	Количество данных	Сегмент	Тип данны	х Тип канала	Описани
- 🖉 RHR_1		1	1	Holding Registers	WORD	Выходной	
- 🖉 WHR 1		1	1	Holding Registers	WORD	Входной	

Рисунок 3.36 – Модуль Server. Закладка Карта сигналов

• *Сегмент* – типом сегмента определяется область хранения данных. Для заданного сегмента выбирается тип данных (см. таблицу 3.27);

• *Тип данных* (см. таблицу 3.27);

Тип данных	Discrete Inputs, Coils	Input Registers, Holding Registers
BOOL	+	-
WORD	-	+
UINT	-	+
INT	-	+
DWORD	-	+
DINT	-	+
UDINT	-	+
REAL	-	+

• Тип канала – определяет доступ к данным со стороны опросчика:

□ входной канал – используется для записи данных в подчиненное устройство (сегменты Coils и Holding Registers);

□ выходной канал – используется для чтения данных из подчиненного устройства (сегменты Discretes Inputs, Input Registers, Coils и Holding Registers).

Существует ограничение на *Количество данных* в зависимости от *Сегмента* и *Типа канала* (см. таблицу 3.28).

Сегмент	Тип канала	Мин. значение	Макс. значение
Discrete Inputs	Выходной	1	500
Coile	Входной	1	500
Colls	Выходной	1	500
Input Registers	Выходной	1	125
Holding Desistars	Входной	1	123
rioluling Registers	Выходной	1	125

Таблица 3.28 – Ограничение на количество данных в зависимости от сегмента типа канала

При двойном нажатии левой кнопки "мыши" в области отображения значений любого атрибута открывается окно редактирования "**Редактор канала**", описание которого представлено в 3.6.5.3.

3.6.5.2 Назначение переменных и имен сигналам канала

При создании канала предоставляется возможность назначить сигналам новую или существующую переменную, а также возможность задать параметры для автоматического формирования имен структуры (автонаименования). Формирование имен осуществляется на основе шаблонов имен, представляющих собой произвольные комбинации служебных последовательностей (таблица 3.29) и обычных символов в соответствии с разрешенными в IEC 61131-3 символами для имен переменных.

Название	Обозначение	Пример	Описание
Имя канала	%CHANNEL%	Channel3	Заданное имя канала
Код сегмента (hex)	%PTYPE_X%	x03	
Код сегмента (dec)	%STYPE_D%	03	код сегмента данных в
Код сегмента (строка)	%STYPE_S%	Holding Registers	разных форматах
Тип данных (IEC 61131)	%TYPE%	REAL	Тип данных сигнала
Текущий адрес сигнала (hex)	%CURADDR_X%	x01	Адрес сигнала в
Текущий адрес сигнала (dec)	%CURADDR_D%	1	различных форматах

Таблица 3.29 - Символьные последовательности для шаблонов имен

3.6.5.3 Порядок создания канала

Для создания канала следует:

1 Вызвать закладку просмотра и настройки данных модуля, выделив имя модуля **Server** в дереве устройств и дважды нажав левую кнопку "мыши".

2 Выбрать закладку Карта сигналов.

3 Вызвать контекстное меню и выбрать команду Создать канал....

4 В окне "Редактор канала" (рисунок 3.37) в поле *Имя:* задать имя канала, в поле *Описание:* текстовое описание канала.

Редактор канала				X
Имя: 1	l emperature			
Параметры канала	Сегмент: Тип данных:	Holding Registers	 ✓ 	
Ста Коли	артовый адрес: ичество данных:	100	 Конечный адрес: 101 	
	Тип канала:	Выходной	▼ ◯ hex ⊙ dec	
 Привязка и автоимен Параметры привязки и Общие 	нование автоименовани:	a		
Шаблон име	ени: %СНАМ	NEL% 💌 🛄	Предпросмотр	
			ОК Отме	на

Рисунок 3.37 - Модуль Server. Создание канала

5 Задать атрибуты канала с помощью элементов группы Параметры канала:

5.1 В списке Сегмент: выбрать тип сегмента данных:

- DiscretesInputs;
- Coils;
- Holding Registers;

- InputRegisters.

- 5.2 В списке *Тип данных* выбрать тип данных. Набор допустимых типов данных определяется типом сегмента (таблица 3.27).
- 5.3 С помощью счетчика *Стартовый адрес:* и *Количество данных:* установить начальный адрес блока данных и количество данных в блоке. При этом в поле *Конечный адрес*: отображается конечный адрес блока.
- 5.4 Для сегментов Coils и Holding Registers в списке *Тип канала:* выбрать тип канала.

6 Настроить параметры привязки и автонаименования:

6.1 Нажать кнопку Привязка и автоименование
6.2 Задать шаблоны имен сигналов. Для выбора предопределенной последовательности используется кнопка ..., а для предварительного просмотра результата – кнопка Предпросмотр.

Существующие форматы предопределенной последовательности для формирования имени сигнала представлены на рисунке 3.38 и описаны в таблице 3.29.

раметры привязки и автоименования	
іщие	
Шаблон имени:	Имя канала
	Код сегмента (hex)
	Код сегмента (dec)
	Код сегмента (строка)
	Тип данных (IEC 61131)
	Текущий адрес сигнала (hex)
	Текущий элоес сиснала (dec)

Рисунок 3.38 – Модуль Server. Задание шаблона формирования имени сигнала

Если шаблон имени не задан, то глобальные переменные не формируются. При этом необходимо вручную смаппировать переменные (см. 2.7.1.4.2).

7 Нажать кнопку "ОК".

В результате будет создан канал с указанными атрибутами. Для просмотра сигналов канала следует перейти на закладку *Соотнесение входов/выходов* модуля **Server** (см. рисунок 3.39).

MBRTUS	🛉 5e	erver X				
Редактор параметро	в Кар	та сигналов 🛛 🗮	Соотнесен	ие входов/выходов	Состояние	🗼 Информация
Каналы						
Переменная	Co	Канал	Адрес	Тип	Ед	Описание
🗐 🗀 Channels						
😟 🍢		RHR_1	%QW0	ARRAY [11] OF WOR	RD	
😟 🦄		WHR_1	%IW82	ARRAY [11] OF WOR	RD .	
🖹 🔯 Diagnostics						
···· 🍫		Connect	%IB136	BYTE		Состояние связи (0 - нет опроса; 1 - идет опрос) (Стар
🖹 🔁 Statistics						
🍫		ConnectCnt	%ID35	UDINT		Счетчик установлений соединения.
🍫		CntRxRead	%ID36	UDINT		Количество принятых запросов на чтение данных.
🍬		CntRxWrite	%ID37	UDINT		Количество принятых запросов на запись данных.
🍫		CntTx	%ID38	UDINT		Количество ответов на запрос чтения или записи
🍫		CntTxException	%ID39	UDINT		Количество выданных ответов Exception
L 🍬		CntCRCErr	%ID40	UDINT		Количество сброшенных кадров по несовпадению CRC

Контроллер программируемый логический Элсима

Рисунок 3.39 – Модуль Server. Закладка Соотнесение входов/выходов

3.6.6 Настройка статистических и диагностических параметров и соотнесение сигналов

Модуль **Server** имеет набор диагностических и статистических сигналов, представленных на рисунке 3.39. Сигналы диагностики и статистики описаны в таблице 3.30.

Имя	Тип	Описание
	Диаг	ностические сигналы
Connect	BYTE	Наличие связи с ведущим устройством:
		0 – нет опроса;
		<i>1</i> – идет опрос
	Ста	гистические сигналы
ConnectCnt	UDINT	Счетчик установлений соединения
CntRxRead	UDINT	Количество принятых запросов на чтение данных
CntRxWrite	UDINT	Количество принятых запросов на запись данных
CntTx	UDINT	Количество ответов на запрос чтения или записи
CntTxException	UDINT	Количество выданных ответов Exception
CntCRCErr	UDINT	Количество сброшенных кадров по несовпадению CRC

|--|

3.6.7 Рекомендации по работе с модулем MBRTUS

Бывают случаи, когда есть необходимость зафиксировать факт получения входного сигнала с тем же значением, что и предшествующее. В обычной ситуации сигналы фиксируются только по изменению их значения, т.е. если протокол передает сигнал два раза с одним значением, то в задачу данный сигнал не проходит. В таких случаях используется функциональный блок **MapIn**, который позволяет фиксировать факт прохожения сигнала независимо от идентичности значений.

В случаях, если выходному сигналу присваиваются идентичные значения, модуль **MBRTUS** передаст данные значения (HR, Coils) **Slave** устройству один раз. Для того, чтобы передавать выходные сигналы независимо от идентичности значений, применяется функциональный блок **MapOut**.

Ниже представлен код программы, иллюстрирующий работу функциональных блоков **MapIn** и **MapOut**:

PROGRAM PLC_PRG VAR

(*MapIn*)

Руководство по эксплуатации

HrCmd_100 : INT; // Holding Register по адресу 100 hr100mapin : Elesy.MapIn(ADR(HrCmd_100)); // Объявление ΦБ MapIn myflaghr100: BOOL; (* Флаг, с помощью которого можно зафиксировать принятие сигнала *) mycnthr100: INT; // Счетчик принятых сигналов (ПС) hr43_100_mapout : elesy.MapOut(ADR(SICmd_43_100)); // Объявление ΦБ MapOut cmdSend : BOOL; // Переменная, отвечающая за передачу сигнала Hr_100 : INT; END_VAR

(*MapIn*)

hr100mapin(); // Вызов ФБ MapIn

myflaghr100 := hr100mapin.IsUpdate(); // Проверяем, принят ли сигнал

IF myflaghr100 = TRUE THEN // TRUE – сигнал зафиксирован

mycnthr100 := mycnthr100 + 1; (* Счетчик ПС увеличивается, если сигналы с одинаковыми значениями зафиксированы *)

END_IF

Hr_100 := HrCmd_100; // Считывется принятое значение

(*MapOut*)

hr43_100_mapout(); // Вызоб ФБ MapOut

SICmd_43_100[1] := 78; // Присваивание значения элементу массива

IF cmdSend = TRUE THEN (* Инициация передачи сигнала *)

hr43_100_mapout.control := 1; (* Установить поведение для однократной передачи данных выхода; 1 – сигнал будет передан *)

cmdSend := FALSE;

END_IF

Более подробное описание ФБ **МарІп** и **МарОut** представленно в Приложение Д.

3.7 Программный модуль опроса счетчиков электроэнергии СЭТ4ТМ03М и ПСЧ-4ТМ.05 МК (МД)

В настоящем подразделе представлено описание данных программного модуля **ElMicronMst**. Модуль предназначен для обеспечения опроса счетчиков электроэнергии СЭТ4ТМ03М и ПСЧ-4ТМ.05МК (МД) через интерфейс *RS-485*.

Модуль **ElMicronMst** обеспечивает опрос до *16* счетчиков указанных моделей в любой комбинации. Наименование модуля в конфигурации – **ElMicronMst**.

3.7.1 Общий принцип конфигурирования модуля опроса счетчиков

Конфигурирование модуля **ElMicronMst** разбивается на следующие шаги:

1 Добавление в дерево конфигурации модуля – ElMicronMst.

2 Добавление в дерево конфигурации для модуля **ElMicronMst** модулей опрашиваемых счетчиков – **SET4TM** и **PSH4TM**.

3 Добавление для каждого модуля (SET4TM и PSH4TM) карты опроса.

4 Связывание сигналов модулей ElMicronMst и SET4TM (или PSH4TM) с пользовательскими переменными.

5 Настройка параметров физического интерфейса *RS*-485 и связывание его с модулем **ElMicronMst** (см. 3.13.2).

3.7.2 Настройка модуля ElMicronMst

Настройка модуля **ElMicronMst** выполняется в системе *CoDeSys* на закладке просмотра и настройки модуля **ElMicronMst**. Для выполнения операции следует:

1 Открыть закладку просмотра и настройки модуля **ElMicronMst**, выделив имя модуля в дереве устройств и дважды нажав левую кнопку "мыши".

2 Перейти на закладку Редактор параметров (см. рисунок 3.40).

едактор па	араметров	🗮 Соотнесение входов/выходов 🛛 Состояние 🚺 Информация					
🔊 Инфор	мация Модул	าส					
Имя	Значение	Описание					
ChName	elmicronmst	Имя канала					
ChNum	1	Номер канала					
ChVersion	1.0.0.0	Версия канала					
ChDate	05.04.2016	Дата создания/изменения канала					
Priority	11	Приоритет канала					
ChDebug	135	Флаг отладки канала					
RealName	no data	Имя канала фактическое					
RealSoft	no data	Имя ПО фактическое					
RealDate	no data	Фактическая дата создания канала					
License no data Наличие лицензии (0 - отсутствует, 1 - присутствует)							
Конфи	гурационные	а Параметры Молуда					
Имя	Значение	е Описание					
DiagTime	out 1000	Таймаут выдачи диагностики, мс					

Рисунок 3.40 – Модуль ElMicronMst. Закладка Редактор параметров

3 Выполнить настройку параметров модуля:

• информационные параметры – общая информация о программном модуле (параметры не доступны для редактирования пользователем). Описание параметров приведено в таблице 3.31;

Имя	Значение "по умолчанию"	Описание		
ChName	elmicronmst	Имя канала		
ChNum	1	Номер канала		
ChVersion	1.0.0.0	Версия канала		
ChDate	DD.MM.YY	Дата создания/изменения канала в формате день.месяц.год		
Priority	11	Приоритет канала		
ChDebug	135	Флаг отладки канала		
RealName	no data	Имя канала фактическое		
RealSoft	no data	Имя ПО фактическое		
RealDate	no data	Фактическая дата создания канала		
License	no data	Наличие лицензии (0 – отсутствует, 1 – присутствует)		

Таблица 3.31 – Модуль ElMicronMst. Информационные данные

• конфигурационные параметры модуля описаны в таблице 3.32.

Таблица 3.32 – Модуль ElMicronMst. Конфигурационные параметры

Имя	Значение "по умолчанию"	Описание
DiagTimeOut	1000	Период времени для выдачи диагностической информации о работе модуля в систему, мс

На рисунке 3.41 представлен вид закладки *Соотнесение входов/выходов* программного модуля **ElMicronMst** с диагностическими сигналами. Сигналы диагностики являются системными (необходимы на этапе отладки программного обеспечения) и в настоящем руководстве не описываются.

Редактор параметров 🛛 🗮 Со	отнесение входов	/выходов	Состояние	🦆 Инфа	ормация	
Каналы						
Переменная	Соотнесение	Канал	Адрес	Тип	Единица	Описание
🖃 🚞 Diagnostic						
*		cstatus	%ID25	UDINT		Статус работы канала
🗐 ᡟ 👂		chstat	%ID26			Статистика работы канала
🚊 - 🎽		libstat	%ID32			Статистика работы библиотеки канал

Рисунок 3.41 - Модуль ElMicronMst. Закладка Соотнесение входов/выходов

3.7.3 Модули SET4TM и PSH4TM

Модули **SET4TM** и **PSH4TM** предназначены для организации опроса конкретной модели счетчика – **СЭТ** или **ПСЧ**. Символьное обозначение модулей, используемое в сервисной программе – **SET4TM** и **PSH4TM**, соответственно.

Настройка работы модулей **SET4TM** и **PSH4TM** в системе *CoDeSys* состоит из следующих этапов:

- 1 Настройка конфигурационных параметров (см. 3.7.4).
- 2 Конфигурирование базы сигналов модулей **SET4TM** и **PSH4TM** (см. 3.7.5).
- 3 Соотнесение сигналов (см. 3.7.6).

3.7.4 Настройка конфигурационных параметров модулей SET4TM и PSH4TM

Настройка конфигурационных параметров осуществляется на закладке просмотра и настройки модуля **SET4TM** (**PSH4TM**). Для выполнения операции следует:

1 Открыть закладку просмотра и настройки модуля **SET4TM** (**PSH4TM**), выделив имя модуля в дереве устройств и дважды нажав левую кнопку "мыши".

2 Перейти на закладку *Редактор параметров* (на рисунке 3.42 показана закладка *Редактор параметров* для модуля **SET4TM**).

З Настроить конфигурационные параметры модуля. Описание параметров модуля **SET4TM** представлено в таблице 3.33 (перечень параметров модуля **PSH4TM** аналогичен перечню параметров модуля **SET4TM**).

ElMicron	Mst 📑 SET 41	M X				
Редактор парам	иетров Карта сигна	лов 🗮 ElsyMA.SETPSH Соотнесение входов/выходов Состояние 🤳 Информация				
🔿 Конфигура	ационные Параметрь	і Модуля				
Имя	Значение Описание					
ServerAddress	1	Адрес подчиненного устройства				
Answer_TO	1000	Таймаут ожидания ответа от ведомого устройства, мс				
MaxRep	3	Количество повторных запросов к ведомому устройству в случае отсутствия ответа.				
Password	000000	Пароль для работы с данным устройством.				

Рисунок 3.42 – Модуль SET4TM. Закладка Редактор параметров

Таблица 3.33 -	- Молуль	SET4TM.	Конфигурац	ионные па	раметры
	1110000				p

Имя Значение "по умолчанию"		Описание		
ServerAddress	1	Адрес ведомого устройства, для которого создаётся конфигурация		
Answer_TO	1000	Тайм-аут ответа (задаётся в мс). Время, в течение которого ожидается ответ ведомого устройства. Отсчёт времени начинается после выдачи запроса		
MaxRep	3	Количество повторов. Число повторений запроса к устройству в случае истечения тайм-аута на ответ		
Password	000000	Пароль для начала работы со счетчиком. Пароль "по умолчанию" – 6 символьных нулей		

3.7.5 Конфигурирование базы сигналов модулей SET4TM и PSH4TM

3.7.5.1 Понятие коммуникационного канала

Формирование сигналов для чтения данных счетчика электроэнергии осуществляется через создание коммуникационного канала, описывающего один непрерывный блок данных. Каналы могут быть логически сгруппированы в секции.

Для работы с каналами и секциями используются следующие операции:

- 1 Создание канала/секции.
- 2 Редактирование (имени секции или атрибутов канала в зависимости от контекста).
- 3 Копирование (для вставки в такой же модуль в конфигурации).
- 4 Удаление.

Для выполнения операции следует:

1 Вызвать закладку просмотра и настройки данных модуля, выделив имя модуля в дереве устройств и дважды нажав левую кнопку "мыши".

2 Выбрать закладку Карта сигналов.

3 Вызвать контекстное меню и выбрать соответствующую команду (см. рисунок 3.43).

Рисунок 3.43 – Модуль SET4TM (PSH4TM). Общий вид контекстного меню

Атрибуты канала представлены на рисунке 3.44.

ElMicronMst	SET4TM :	×			
Редактор параметров	Карта сигналов	🗮 ElsyMA	.SETPSH Соотнесение входов/выход	ов Состояние	🔱 Информация
Имя	Элеме	нт данных	Получать код подтверждения	Тип данных	Описание
MyCoefPowerC	tos CoefPou	werCos	False	stCoefPower	
MyCoefPowerS	in CoefPov	werSin	False	stCoefPower	
- 🥖 MyCoefPowerT	ig CoefPou	werTg	False	stCoefPower	

Рисунок 3.44 – Модуль SET4TM (PSH4TM). Закладка Карта сигналов

Канал имеет следующие атрибуты:

• Имя – имя секции/канала. Задает условное название блока данных;

• Элемент данных – выбор элемента данных измерений, которые необходимо получить от счетчика электроэнергии. Набор поддерживаемых элементов данных представлен в таблице 3.34.

Элемент данных Направление Входной (I) / Выходной (Q)		Описание элемента данных		
Energy	Ι	Энергия от сброса (нарастающий итог). Тариф 1		
PowerP	Ι	Активная мощность по фазам		
PowerQ	Ι	Реактивная мощность по фазам		
PowerS	Ι	Полная мощность по фазам		
CoefPowerSin	Ι	Коэффициент активной мощности sin ф		
CoefPowerCos	Ι	Коэффициент реактивной мощности cos ф		
CoefPowerTg	Ι	Коэффициент реактивной мощности tgф		
PowerLossP	Ι	Мощность потерь в линии и силовом трансформаторе активная		
PowerLossQ I		Мощность потерь в линии и силовом трансформаторе реактивная		
VoltageMomentary	Ι	Мгновенное значение напряжения		
VoltageAveraged	Ι	Усредненное значение напряжения		
Current	Ι	Ток		
Frequency	Ι	Частота сети		
Temperature	Ι	Температура внутри счетчика		
Diag	Ι	Флаги состояния измерителя. Битовое поле		

Таблица 3.34 – Элементы данных

Элемент данных	Направление Входной (I) / Выходной (Q)	Описание элемента данных				
State	Ι	Слово состояния. Битовое поле				
HWVersion	Ι	Вариант исполнения счетчика				
CurrentRating	Ι	Коэффициенты трансформации				
П р и м е ч а н и е – Направление определяет доступ к данным со стороны модуля: входной канал используются для чтения данных счетчика, выходной – для записи. В данном модуле используются только входные каналы.						

Таблица 3.34 – Элементы данных

• *Тип данных* – типом данных определяется структура элемента данных. Типы данных представлены в таблице 3.35.

Таблица 3.35 – Типы данных

Элемент данных	Имя поля в структуре	Размер, байт	Тип	Описание элемента данных
Energy *			sEnergy	Энергия от сброса (нарастающий итог). Тариф 1 **:
	APlus	4	udint	 – А+ – активная энергия прямого направления
	AMinus	4	udint	 – А- – активная энергия обратного направления
	RPlus	4	udint	 – R+ – реактивная энергия прямого направления
	RMinus	4	udint	 – R- – реактивная энергия обратного направления
	R1	4	udint	 – R1 – реактивная энергия 1-го квадрант
	R2	4	udint	 – R2 – реактивная энергия 2-го квадрант
	R3	4	udint	– R3 – реактивная энергия 3-го квадрант
	R4	4	udint	 – R4 – реактивная энергия 4-го квадранта
PowerP			stPowerP	Активная мощность по фазам **:
	Sum	4	udint	– по сумме фаз
	Phase1	4	udint	– по фазе 1
	Phase2	4	udint	– по фазе 2
	Phase3	4	udint	– по фазе 3
PowerQ			stPowerQ	Реактивная мощность по фазам **:
	Sum	4	udint	– по сумме фаз
	Phase1	4	udint	– по фазе 1
	Phase2	4	udint	– по фазе 2
	Phase3	4	udint	– по фазе 3
PowerS			stPowerS	Полная мощность по фазам **:
	Sum	4	udint	– по сумме фаз
	Phase1	4	udint	– по фазе 1
	Phase2	4	udint	– по фазе 2
	Phase3	4	udint	– по фазе 3

Таблица 3.35 – Типы данных

Элемент данных	Имя поля в структуре	Размер, байт	Тип	Описание элемента данных
CoefPowerSin			stCoefPowerSin	Коэффициент активной мощности sin **:
	Sum	4	real	– по сумме фаз
	Phase1	4	real	– по фазе 1
	Phase2	4	real	– по фазе 2
	Phase3	4	real	– по фазе 3
CoefPowerCos			stCoefPowerCos	Коэффициент реактивной мощности соsф **:
	Sum	4	real	– по сумме фаз
	Phase1	4	real	– по фазе 1
	Phase2	4	real	– по фазе 2
	Phase3	4	real	– по фазе 3
CoefPowerTg			stCoefPowerTg	Коэффициент реактивной мощности tgp **:
	Sum	4	real	– по сумме фаз
	Phase1	4	real	– по фазе 1
	Phase2	4	real	– по фазе 2
	Phase3	4	real	– по фазе 3
PowerLossP			stPowerLossP	Мощность потерь в линии электропередачи и силовом трансформаторе активная **:
	Sum	4	real	– по сумме фаз
	Phase1	4	real	– по фазе 1
	Phase2	4	real	– по фазе 2
	Phase3	4	real	– по фазе 3
PowerLossQ			stPowerLossQ	Мощность потерь в линии электропередачи и силовом трансформаторе реактивная **:
	Sum	4	real	– по сумме фаз
	Phase1	4	real	– по фазе 1
	Phase2	4	real	– по фазе 2
	Phase3	4	real	– по фазе 3
VoltageMomentary			stVoltageM	Мгновенное значение напряжения, В:
	Phase1	4	real	– по фазе 1
	Phase2	4	real	– по фазе 2
	Phase3	4	real	– по фазе 3
	Interphase1	4	real	– между фазами 1 и 2
	Interphase2	4	real	– между фазами 2 и 3
	Interphase3	4	real	– между фазами 3 и 1
	Line	4	real	– прямои последовательности U1(1)

,				
Элемент данных	Имя поля в структуре	Размер, байт	Тип	Описание элемента данных
VoltageAveraged			stVoltageM	Усредненное значение напряжения, В:
	Phase1	4	real	– по фазе 1
	Phase2	4	real	– по фазе 2
	Phase3	4	real	– по фазе 3
	Interphase1	4	real	– между фазами 1 и 2
	Interphase2	4	real	– между фазами 2 и 3
	Interphase3	4	real	– между фазами 3 и 1
	Line	4	real	 – прямой последовательности U1(1)
Current			stCurrent	Ток, А:
	Phase1	4	real	– по фазе 1
	Phase2	4	real	– по фазе 2
	Phase3	4	real	– по фазе 3
Frequency			stFrequency	Частота сети, Гц:
	Momentary	4	real	– мгновенное значение частоты
	Averaged	4	real	– усредненное значение частоты
Temperature			stTemperature	Температура внутри счетчика, °С:
	Temperature	4	real	– значение температуры
Diag			stDiag	Флаги состояния измерителя:
	Diag	4	dword	– битовое поле ***
State			stState	Слово состояния:
	StateWord	8	lword	– битовое поле ***
HWVersion			stHWVersion	Вариант исполнения счетчика:
	HWVersion	4	dword	– битовое поле ***
CurrentRating			stCurRating	Коэффициенты трансформации:
	Voltage	2	uint	– по напряжению, Кн
	Current	2	uint	– по току. Кт

105

Таблица 3.35 – Типы данных

Примечания

1 * Счетчик ПСЧ-4ТМ.05М поддерживает только APlus, AMinus, RPlus, RMinus.

2 ** Данные измерений, кроме энергии, выдаются в базовых единицах системы СИ, с учетом введенных в счетчик коэффициентов трансформации по напряжению и току:

• мощность	– Вт, вар, В·А	•
• напряжение	– B;	
• ток	– A;	
• коэффициент активной мощи	ности (соѕ ф)	 – без размерности;
• частота сети	– Γц;	
• коэффициенты искажения и	несимметрии	-%;

• температура – °С.

Значения активной мощности и коэффициента активной мощности (соз ф) передаются со знаком «+» (прямое направление), если вектор полной мощности находится в 1-м и 4-м квадрантах, и со знаком «-» (обратное направление), если вектор полной мощности находится во 2-м и 3-м квадрантах.

Значение реактивной мощности передается со знаком «+» (прямое направление), если вектор полной мощности находится в 1-м и 2-м квадрантах, и со знаком «-» (обратное направление), если вектор полной мощности находится в 3-м и 4-м квадрантах.

Остальные параметры передаются со знаком «+».

Таблица 3.35 – Типы данных

Элемент данных	Имя поля в структуре	Размер, байт	Тип	Описан	ие эл	іемент	а данных	X
Энергия в регистрах учтенной энергии счетчиков выдается без учета коэффициентов								
трансформации по напряжению и току в формате внутреннего представления, а именно в числах								
полупериодов телеметрии и определяется постоянной счетчика.								

3 *** Расшифровку значения необходимо уточнять в документации на конкретную модель счетчика электроэнергии

• Получать код подтверждения – признак того, содежит ли структура элемента данных поле с кодом подтверждения запроса. На каждый корректный запрос счетчик возвращает либо данные измерений, либо код подтверждения. Код может принимать следующие значения:

□ "*0*" – все нормально;

□ "*1*" – недопустимая команда или параметр;

□ "7" – не готов результат измерения по запрашиваемому параметру.

Если пользователь выбрал данную опцию, то структура элемента данных дополняется полями с кодом подтверждения для каждого параметра. Пример для элемента данных *Energy* приведен в таблице 3.36 и на рисунке 3.45, аналогично – для всех остальных элементов данных.

Таблица 3.36 – Структура элемента данных *Energy* с кодом подтверждения

Элемент данных	Имя поля в структуре	Размер, байт	Тип	Описание элемента данных
Energy			stEnergyConfirm	Энергия от сброса (нарастающий итог). Тариф 1:
	APlus	4	udint	 – А+ – активная энергия прямого направления
	AMinus	4	udint	 А- – активная энергия обратного направления
	RPlus	4	udint	 – R+ – реактивная энергия прямого направления
	RMinus	4	udint	 – R- – реактивная энергия обратного направления
	R1	4	udint	 – R1 – реактивная энергия 1-го квадрант
	R2	4	udint	– R2 – реактивная энергия 2-го квадрант
	R3	4	udint	– R3 – реактивная энергия 3-го квадрант
	R4	4	udint	– R4 – реактивная энергия 4-го квадранта
	APlusConfirm	1	byte	 Код подтверждения А+ – активная энергия прямого направления
	AMinusConfirm	1	byte	 Код подтверждения А- – активная энергия обратного направления
	RPlusConfirm	1	byte	 Код подтверждения R+ – реактивная энергия прямого направления
	RMinusConfirm	1	byte	 Код подтверждения R- – реактивная энергия обратного направления
	R1Confirm	1	byte	 Код подтверждения R1 – реактивная энергия 1-го квадрант
	R2Confirm	1	byte	 Код подтверждения R2 – реактивная энергия 2-го квадрант
	R3Confirm	1	byte	 Код подтверждения R3 – реактивная энергия 3-го квадрант
	R4Confirm 1		byte	 Код подтверждения R4 – реактивная энергия 4-го квадранта

ElMicronMst	SET4TM	SH4TM X				
Редактор параметров Карта	сигналов 🗮 Els	MA.SETPSH Coothe	сение входов/в	ыходов	Состояние	🗼 Информация
Каналы				_		
Переменная	Соотнесение	Канал	Адрес	Тип	Единица	Описание
🖲 🚞 Diagnostics						
😟 🚞 Statistics						
🖻 🚞 Channels						
🗐 🦄 St_2_Energy	**	MyEnergy	%ID113			
* @		APlus	%ID113	UDINT		А+ активная энергия прямого направления
		AMinus	%ID114	UDINT		А- активная энергия обратного направления
🍫		RPlus	%ID115	UDINT		R+ реактивная энергия прямого направления
		RMinus	%ID116	UDINT		R- реактивная энергия прямого направления
*		R1	%ID117	UDINT		R1 реактивная энергия 1-го квадранта
*		R2	%ID118	UDINT		R2 реактивная энергия 2-го квадранта
🍫		R3	%ID119	UDINT		R3 реактивная энергия 3-го квадранта
*		R4	%ID120	UDINT		R4 реактивная энергия 4-го квадранта
*		APlusConfirm	%IB484	BYTE		подтверждение А+ активной энергии прямого направления
*		AMinusConfirm	%IB485	BYTE		подтверждение А- активной энергии обратного направления
- *		RPlusConfirm	%IB486	BYTE		подтверждение R+ реактивной энергии прямого направления
🍫		RMinusConfirm	%IB487	BYTE		подтверждение R- реактивной энергии прямого направления
*>		R1Confirm	%IB488	BYTE		подтверждение R1 реактивной энергии 1-го квадранта
- *		R2Confirm	%IB489	BYTE		подтверждение R2 реактивной энергии 2-го квадранта
- *		R3Confirm	%IB490	BYTE		подтверждение R3 реактивной энергии 3-го квадранта
×		R4Confirm	%IB491	BYTE		подтверждение R4 реактивной энергии 4-го квадранта

Рисунок 3.45 – Модуль SET4TM (PSH4TM). Структура элемента данных *Energy* с кодом подтверждения

При двойном нажатии левой кнопки "мыши" в области отображения значений любого атрибута открывается окно редактирования "**Редактор канала**", описание которого представлено в 3.7.5.3.

ВНИМАНИЕ! Энергия в регистрах учтенной энергии счетчиков хранится и считывается по интерфейсам связи без учета коэффициентов трансформации по напряжению и току в формате внутреннего представления, а именно в числах полупериодов телеметрии и определяется постоянной счетчика. Постоянные счетчиков в зависимости от типа счетчика и варианта исполнения необходимо брать из документации на счетчики. Ниже приведен пример коэффициентов (актуальных на момент выпуска данного документа) для различных типов счетчиков.

Тип счетчика	Uном, В	Іном (Imax), А	Постоянная счетчика А, имп/ кВт·ч (имп/ квар·ч)	Разрешающая способность регистров энергии, Вт.ч (вар.ч)
$C T_{4} T M 01$	57,7	5 (7,5)	5000	0,1
CT-4TM.01,	57,7	1 (1,5)	25000	0,02
$\Gamma C J I - 4 T M .02,$	120-230	5 (7,5)	1250	0,4
110-1-41101.03	120-230	1 (1,5)	6250	0,08
	57,7-115	5 (7,5)	5000	0,1
ПСЧ-4ТМ.05М	57,7-115	1 (1,5)	25000	0,02
	120-230	5 (7,5)	1250	0,4
	120-230	1 (1,5)	6250	0,08
СЭТ-1М.01	230	5 (7,5)	5000	0,1
C 3T 4TM 03	57,7	1 (10)	5000	0,1
C31-41MI.05	120-230	1 (10)	1250	0,4
СЭТ-4ТМ.02М,	57,7-115	5 (10)	5000	0,1
СЭТ-4ТМ.03М,	57,7-115	1 (2)	25000	0,02
ПСЧ-	120-230	5 (10)	1250	0,4
4ТМ.05МК,	120-230	1 (2)	6250	0,08
ПСЧ-4ТМ.05МД		``´		·
СЭБ-1ТМ.01	230	5 (50)	500	1
СЭБ-1ТМ.02(Д)	230	5 (75)	500	1

СЭБ-1ТМ.02М,	230	5 (80)	500	1
СЭБ-1ТМ.03				
ПСЧ-3ТМ.05	230	5(100)	250	2
ПСЧ-3ТМ.05М	120-230	5(100)	250	2
ПСЧ-4ТМ.05МК				
ПСЧ-4ТМ.05МД	120-230	5 (80)	250	2
ПСЧ-4ТМ.05МН				

Перевод числа из формата внутреннего представления в энергию в кВт·ч или квар·ч с учетом коэффициента трансформации производится по формуле:

$$\mathbf{E}(\mathbf{\kappa}\mathbf{B}\mathbf{T}\cdot\mathbf{u},\mathbf{\kappa}\mathbf{B}\mathbf{a}\mathbf{p}\cdot\mathbf{u}) = \frac{\mathbf{N}}{2\cdot\mathbf{A}}\cdot\mathbf{K}\mathbf{H}\cdot\mathbf{K}\mathbf{T},$$

где: N – энергия формате внутреннего представления;

А – постоянная счетчика;

Кн – коэффициент трансформации напряжения;

Кт – коэффициент трансформации тока.

3.7.5.2 Назначение переменных и имен сигналам канала

При создании канала предоставляется возможность назначить сигналам новую или существующую переменную, а также возможность задать параметры для автоматического формирования имен структуры (автонаименования). Формирование имен осуществляется на основе шаблонов имен, представляющих собой произвольные комбинации служебных последовательностей (таблица 3.37) и обычных символов в соответствии с разрешенными в IEC 61131-3 символами для имен переменных.

Таблица 3.37 – Символьные последовательности для шаблонов имен

Название	Обозначение	Пример	Описание
Имя канала	%CHANNEL%	MyEnergy	Заданное имя канала
Адрес подчиненного устройства (dec)	%SLAVE_ADDR_DEC%	1	Сетевой адрес счетчика электроэнергии
Имя элемента данных	%ELEMENT_NAME%	Energy	Имя элемента данных

3.7.5.3 Порядок создания канала

Для создания канала следует:

1 Вызвать закладку просмотра и настройки данных модуля, выделив имя модуля в дереве устройств и дважды нажав левую кнопку "мыши".

2 Выбрать закладку Карта сигналов.

3 Вызвать контекстное меню и выбрать команду Создать канал....

4 В окне "Редактор канала" (рисунок 3.46) в поле *Имя:* задать имя канала, в поле *Описание:* текстовое описание канала.
Контроллер программируемый логический Элсима

Редактор канала	
Имя: Описание: Параметры канала Сполучать код	МуЕnergy Энергия от сброса (нарастающий итог). Элемент данных: Energy •
Параметры привязки Общие	и автоименования St_%SLAVE_ADDR_DEC%_%ELEMEN 💟 Предпросмотр
	ОК Отмена

Рисунок 3.46 - Модуль SET4TM (PSH4TM). Создание канала

5 Задать атрибуты канала с помощью элементов группы Параметры канала.

- 5.1 В списке Элемент данных: выбрать соответствующий элемент данных (таблица 3.34).
- 5.2 Если необходимо получать не только данные измерений, но и код подтверждения на запрос этих данных, то нужно установить флаг *Получать код подтверждения*. Структура элемента данных, содержащего код подтверждения, приведена в таблице 3.36.
- 6 Настроить параметры привязки и автонаименования:
 - 6.1 Нажать кнопку Привязка и автоименование
 6.2 Задать шаблоны имен сигналов. Для выбора предопределенной последовательности используется кнопка . , а для предварительного просмотра результата кнопка Предпросмотр.

Существующие форматы предопределенной последовательности для формирования имени сигнала представлены на рисунке 3.47 и описаны в таблице 3.37.

Если шаблон имени не задан, то глобальные переменные не формируются. При этом необходимо вручную смаппировать переменные (см. 2.7.1.4.2).

7 Нажать кнопку "ОК".

араметры привязки и автоименования	1
бщие	
	🔛 🛄 Имя канала
Шаблон имени:	Адрес подчиненного устройст
	Имя элемента данных

Рисунок 3.47 – Модуль SET4TM (PSH4TM). Задание шаблона формирования имени сигнала

В результате будет создан канал с указанными атрибутами. Для просмотра сигналов канала следует перейти на закладку *ElsyMA.SETPSH Coomhecenue входов/выходов* (см. рисунок 3.48).

Редактор параметров Карта си	гналов 🗮 Els	MA.SETPSH Coor	песение вход	ов/выход	ов Состоя	ние 🤳 Информация
Каналы						
Переменная	Соотнесение	Канал	Адрес	Тип	Единица	Описание
🖃 🚞 Diagnostics	0.1					
- 🍫 St_1_Connect	×ø	Connect	%IB136	BYTE		Состояние связи (0 - нет связи; 1 - есть связь, идет опрос; 2 - есть связь, но задан неверны
🖶 🚞 Statistics						
- 🍫 St_1_ConnectCnt	10	ConnectCnt	%ID35	UDINT		Счетчик установлений соединения.
St_1_CntTxRead	***	CntTxRead	%ID36	UDINT		Количество выданных запросов на чтение данных.
- 🍫 St_1_CntRx	×	CntRx	%ID37	UDINT		Количество полученных ответов на запрос
St_1_CntCRCErr	***	CntCRCErr	%ID38	UDINT		Количество сброшенных кадров по несовпадению CRC
St_1_CntTimeOutErr	***	CntTimeOutErr	%ID39	UDINT		Количество ошибок по таймауту считая с последней удачной установки связи с подчиненны
🖻 🚞 Channels						
📮 🍫 St_1_Energy	**	MyEnergy	%ID40			
*		APlus	%ID40	UDINT		А+ активная энергия прямого направления
*		AMinus	%ID41	UDINT		А- активная энергия обратного направления
🍫		RPlus	%ID42	UDINT		R+ реактивная энергия прямого направления
🍫 -		RMinus	%ID43	UDINT		R- реактивная энергия прямого направления
🍫		R1	%ID44	UDINT		R1 реактивная энергия 1-го квадранта
*		R2	%ID45	UDINT		R2 реактивная энергия 2-го квадранта
🍫		R3	%ID46	UDINT		R3 реактивная энергия 3-го квадранта
L 🌪		R4	%ID47	UDINT		R4 реактивная энергия 4-го квадранта
St_1_PowerP	**	MyPowerP	%ID48			
🗄 🍓 St 1 PowerO	×	MyPowerQ	%ID52			

Рисунок 3.48 – Модуль SET4TM (PSH4TM). Закладка *ElsyMA.SETPSH Coomhecenue* входов/выходов

3.7.6 Настройка статистических и диагностических параметров и соотнесение сигналов

Модули **SET4TM** и **PSH4TM** имеют набор статистических сигналов, представленных на рисунке 3.48. Сигналы диагностики и статистики описаны в таблице 3.38.

Имя	Тип	Описание		
Диагностические сигналы				
		Наличие связи с опрашиваемым устройством:		
Connect	DVTE	0 – нет связи;		
	DIIL	<i>1</i> – есть связь, идет опрос;		
		2 – есть связь, но задан неверный пароль		
Статистические сигналы				
ConnectCnt	UDINT	Счетчик установлений связи		
CntTxRead	UDINT	Количество выданных запросов на чтение данных		
CntRx	UDINT	Количество полученных ответов на запрос		
CntCRCErr	UDINT	Количество сброшенных кадров по несовпадению CRC		
CatTimeOutEur		Количество ошибок по тайм-ауту, считая с последней		
ChtThneOutErr	UDINI	удачной установки связи с подчиненным устройством		

3.8 Работа со счетчиками электроэнергии Энергомера CE301/302/303/304

Для обеспечения информационного взаимодействия ПЛК с измерительным оборудованием Энергомера CE301/302/303/304 в состав конфигурационного пакета включена библиотека **CE30XLibrary**, в которую входит функциональный блок (ФБ) **CE30X** (*Device* (*ELSYMA*) \rightarrow *Plc Logic* \rightarrow *Application* \rightarrow *Meнeджер библиотек* \rightarrow *ElsyMA_CE30X*, *см.* 2.7.1.2).

Вызов функций ФБ позволяет осуществить инициализацию физического интерфейса *RS-485*, используемого для подключения счетчика CE303, и обеспечить получение измеренных значений, контроля состояния оборудования и чтения конфигурационных параметров.

В этом разделе руководства содержится описание работы с библиотекой ФБ **СЕЗОХ**, а примеры применения ФБ приведены в приложении <u>Д</u>.

3.8.1 Конфигурирование ФБ СЕЗОЗ

Применение ФБ не требует специального конфигурирования, т.к. библиотека **CE30XLibrary** уже включена в состав пакета конфигуратора ПЛК. Применение вызовов ФБ в задаче пользователя *CoDeSys* обеспечивает выполнение следующих основных функций:

- инициализация физического интерфейса и переменных ФБ;
- выполнение транзакции (запроса на чтение или запись данных).

Для активации выполнения функции имеется свой управляющий сигнал. Среди входных сигналов ФБ сигналами активации являются:

• *CE30X_INIT* – для инициализации физического интерфейса и переменных ФБ;

• СЕЗОХ_СОNTROL – для выполнения транзакции.

Внимание! Интерфейс *RS-485* может использоваться только одним программным модулем, поддерживающим определённый протокол взаимодействия.

При использовании функции ФБ **СЕЗОХ** нельзя использовать интерфейс *RS-485* для других коммуникаций (таких как *Modbus RTU* и т.п.). Для этого в конфигурации проекта задачи пользователя ПЛК Элсима для устройства **RS485** в закладке *Редактор соединения* необходимо установить для параметра *Server* значение "*None*" (рисунок 3.49).

🛉 R5485 🗙	
Редактор параметров	едактор соединения Состояние 🚺 Информация 🗎
Server: None	•

Рисунок 3.49 – Модуль RS485. Закладка Редактор соединения

Для использования функций библиотеки **СЕЗОХLibrary** необходимо:

1 В разделе переменных создать экземпляр ФБ. Например:

FB_CE30X : ElsyMA_CE30X.CE30X;

2 В тексте программы задачи пользователя обеспечить вызов ФБ.

Для программы на языке ST, при объявлении экземпляра ФБ, как указано выше, код должен быть следующий:

```
FB_CE30X();
```

3 С помощью сервисных средств для оборудования Энергомера необходимо убедиться в уникальности адресов, подключаемых к одной линии счетчиков, проверить пароли доступа.

4 Выполнить физическое подключение линии согласно правилам подключений линий интерфейса *RS-485*.

Совпадение адресов приведёт к сбоям в работе и может вызвать поломку оборудования.

3.8.2 Инициализация ФБ СЕЗОХ

Функция инициализации вызывается один раз в начале выполнения программы с предварительно установленными значениями параметров или параметрами "по умолчанию".

Функция инициализации обеспечивает инициализацию переменных для работы $\Phi Б$ и инициализацию физического интерфейса *RS-485* ПЛК Элсима системными вызовами *CoDeSys* в соответствии со значениями входных переменных и заданного в программе имени порта (имя соответствует физическому устройству *RS-485* в составе ПЛК Элсима).

Набор переменных для выполнения инициализации ФБ приведен в таблице 3.39.

Таблица 3.39 -	ФБ СЕЗ0Х.	Входные и	выходные	переменные	для вып	элнения в	инициализации
···· • • • • • • • • • • • • • • • • •			- / 1 -		r 1.		1

Имя	Тип	Значение "по	Описание		
		умолчанию"			
		Вході	ные переменные		
			Сигнал управления началом выполнения		
		0	инициализации ФБ:		
CE30X_INIT	вүте	0	0 – функция не активна (признак разрешения работы		
			для других вызовов ФЬ);		
			<i>I</i> – активация выполнения инициализации		
			Скорость передачи данных в интерфейсе согласно		
			ГОСТ IEC 61107-2011, бит/с:		
			<i>0 – 300 *</i> ;		
RoudeRate	BVTE	5	1 - 600 *;		
Douachaic	DITE	5	2 – 1200 *;		
			3 - 2400 *;		
			4 - 4800;		
			5 - 9600		
			Тип контроля для символа:		
Davitat	BYTE	2	<i>0 – None</i> (нет);		
rariiei			<i>1 – Odd</i> (нечёт.);		
			2 – <i>Even</i> (чёт.)		
RitNmh	ВУТЕ 7 Количество бит данных в символе.				
Duitino	DITE	,	Допустимые значения – 7, 8		
StonBitNmb	BVTE	1	Количество стоп-бит в символе.		
зюрвимию	DIIE	1	Допустимые значения – 1, 2		
		Выход	ные переменные		
INIT_ErrCode	DINT		Код ошибки. Допустимые значения:		
			0 – успешная инициализация порта с заданными		
			параметрами;		
			<>0 – ошибка инициализации. Коды ошибок:		
			"-1" – ошибка инициализации СОМ порта;		
			"-2" – ошибка тестирования передачи в СОМ-порт;		
			"-3" – ошибка тестирования приёма из СОМ-порта		
Примеча	ние – * 1	В версии 3.5.6.1	и ниже библиотеки СЕЗОХLibrary данное значение		
не доступно		1.	▲ · · ·		

3.8.3 Выполнение транзакции ФБ СЕЗОХ

Функция выполнения транзакции с измерительным оборудованием вызывается из задачи пользователя периодически.

Функция выполнения транзакции обеспечивает выполнение одиночных или последовательности транзакций (передачи запросов и приёма ответов по интерфейсу) с предварительной обработкой результата для контроля ошибок времени ответа, искажения данных и кода ошибки в ответе.

Внимание! Вызов функции выполнения транзакции до завершения инициализации приведёт к ошибке! Для выполнения следующей транзакции необходимо дождаться окончания уже начатой транзакции! Несоблюдение этого правила приведёт к ошибке выполнения.

Набор переменных для выполнения транзакций ФБ (управление работой, задание типа получаемых данных и контроля правильности выполнения) приведен в таблице 3.40.

Имя	Тип	Значение "по	Описание
	1 111	умолчанию''	Onneume
	1	Вході	ные переменные
CE30X_CONTROL	BYTE	0	Сигнал управления началом выполнения транзакции: <i>0</i> – функция не активна (признак разрешения работы для других вызовов ФБ); <i>1</i> – активация выполнения транзакции. После завершения транзакции функция устанавливает значение переменной, равной "0", что является сигналом разрешения выполнения следующей транзакции
CE30X_1D	STRING	"	Идентификатор (номер) опрашиваемого счетчика (максимальный размер – 6 символов). Необходима для обращения к выбранному устройству из множества подключенных к физическому интерфейсу. Переменная не используется при выполнении транзакции в режиме "Одиночная транзакция без установки сессии"
CE30X_PASS	EESOX_PASS STRING		Пароль для доступа к информации (максимальный размер – 255 символов) (если не используется, то пустая строка). Переменная не используется при выполнении транзакции в режиме "Одиночная транзакция без установки сессии"
CE30X_TR	STRING	"	Код запроса в соответствии с форматом, соответствующим требованиям стандарта ГОСТ IEC 61107-2011 (см. руководство по эксплуатации на счетчики CE30X) (максимальный размер – 255 символов). Символами транзакции могут быть непечатные символы, задаваемые с помощью знака \$. Транзакция должна завершиться кодом \$00. <i>Например, запрос модели и версии ПО «/?!»:</i> '\$2F\$3F\$21\$0D\$0A\$00; Запрос состояния батарейки «R1.V_BAT().e»: \$01\$52\$31\$02\$56\$5F\$42\$41\$54\$28\$29\$03\$65\$00
CE30X_TRLN	BYTE	0	Длина сообщения в строке <i>CE30X_TR</i> (количество символов, передаваемых в линию)

Таблица 3.40 – ФБ СЕЗОХ. Входные и выходные переменные для выполнения транзакций

Имя	Тип	Значение "по	Описание
		умолчанию	Тайм-аут ожидания ответа на транзакцию
CE30X ΤΔ	TIME	1000	Пиапазон изменения параметра – от 300 по 10000 мс
CLSUN_III			но не менее ллительности шикла программы
			Режим работы транзакции:
			0 – одиночная транзакция без установки сессии;
			<i>1</i> – транзакция с установкой сессии без закрытия;
			2 – транзакция с установкой сессии с закрытием после
			завершения транзакции.
			В режиме "Одиночная транзакция без установки
			<i>сессии</i> " содержимое переменной <i>CE30X_TR</i>
			передаётся в линию и ожидается один ответ в течение
		_	времени, заданного переменной СЕЗОХ_ТА.
CE30X_MODE	BYTE	0	В режиме "Транзакция с установкой сессии без
			закрытия" устанавливается сессия и выдаётся одна
			транзакция из переменной <i>CE30X_TR</i> . После этого
			можно выдать несколько транзакции в режиме
			Ооиночная транзакция оез установки сессии .
			гежим <i>Тринзикция с устиновкой сессии с закрытием</i>
			после зивершения тринзикции аналогичен
			предыдущему; только после завершения транзакции выпаётся сигнал закрытия сессии.
			\$ 0 1 \$ 4 2 \$ 30 \$ 0 3 \$ 7 5
	1	Выход	ные переменные
	BOOL		Сигнал занятого ФБ:
CE30X_BUSY		0	0 – ФБ свободен для выполнения транзакций;
			<i>1</i> – ФБ занят
			Код ошибки выполнения последней транзакции:
			0 – нет ошибки;
CE30X ERR	UINT	0	<>0 – код ошиоки (часть кодов определена
			производителем счетчика $(1-5\delta)$, часть неооходима
			для индикации ошиоки расоты ФБ (100–105), см.
			Паолицу 5.41) Ответ на транзакцию (максимальный размер – 255
			симвопов)
CE30X_IN	STRING	"	В случае ощибки "03" строка булет иметь вил:
			ERR03
CE20V ININ	DVTE	0	Длина принятого сообщения в строке CE30X_OUT
CESUA_INLN	DIIL	0	(количество символов, принятых из линии)
			Номер текущей выполняемой транзакции (по модулю
		-	-65536).
CE30X_TRCURR	UINT	0	До выполнения первой транзакции <i>CE30X_TRCURR</i>
			должен быть равен " 0 ".
			После переполнения – переход в "1"
			номер последнеи завершеннои транзакции (по
CE30X_TRLAST	UINT	0	модулю – 05550). До выполнения первои должен оыть
			рабон о. После завершения пранзакции увеличивается на "1" вне зависимости от опшебки выполнения
	1		

Таблица 3.40 – ФБ СЕЗОХ. Входные и выходные переменные для выполнения транзакций

При выполнении вызова ФБ для транзакции с измерительным оборудованием могут возникнуть ошибки, список кодов, возвращаемых через переменную *CE30X_ERR*, приведён в таблице 3.41.

Код	Описание сигнала
0 0	Нет ошибки
0	"Пониженное напряжение питания"
	Проверьте правильность полключения счетчика и его соответствие напряжению сети
1	Если все верно, но ощибка не исчезает, счетчик необхолимо направить в ремонт. Ощибка
	инлицируется постоянно до устранения причины ее появления
	"Неверный пароль"
2	Означает, что при программировании был введен пароль, несовпадающий с внутренним
3	паролем счетчика. Необходимо повторить транзакцию с верным паролем (для второй или
	третьей попыток)
	"Сбой обмена по интерфейсу"
	Означает, что при обмене через порт связи была ошибка паритета или ошибка
	контрольной суммы, произошел сбой из-за неправильного соединения, неисправности
4	интерфейсной части счетчика или подключенного к нему устройства. Если при повторных
	попытках сообщение повторяется, необходимо убедиться в работоспособности счетчика
	и подключаемого к нему устройства, правильности соединения этих устройств
	и работоспособности применяемой программы связи
	"Ошибка протокола"
	Появляется, если сообщение, полученное счетчиком через порт связи, синтаксически
5	неправильное. Если при повторных попытках сообщение повторяется, необходимо
5	убедиться в работоспособности счетчика и подключаемого к нему устройства,
	правильности соединения этих устройств и работоспособности применяемой программы
	СВЯЗИ
	"Тайм-аут при приеме сообщения"
7	Означает, что в отведенное протоколом время не было получено необходимое сообщение.
/	Если при повторных попытках сообщение повторяется, необходимо убедиться
	в расотоспосооности счетчика и подключаемого к нему устроиства, правильности
	соединения этих устроиств и раобтоспособности применяемой программы связи
	Гаим-аут при передаче сообщения
8	Означает, что в отведенное протоколом время не установился режим готовности канала
	работоспособности сцетцика и наличии необходимых условий для связи
	"Исчерпан лимит ошибок ввола неверного пародя"
9	Означает, что при программировании было более трех попыток ввола неверного пароля
-	в течение текуших суток. Ложлитесь следующих суток и ввелите правильный пароль
	"Нелопустимое число параметров в массиве"
10	Означает, что количество одноименных параметров превышает допустимое значение
	и параметр, в ответ на которого было выведено это сообщение, игнорируется
	"Неподдерживаемый параметр"
12	Означает, что параметр отсутствует в списке параметров счетчика.
	Использовать параметры, допустимые для данного счетчика
	"Запрет программирования"
	Означает, что не нажата кнопка "ДСТП", не введен пароль или нет параметра в списке
14	программирования пользователя. Необходимо снять пломбу с кнопки "ДСТП", перевести
	счетчик в режим программирования и/или ввести пароль. Для пользователя, при
	необходимости, ввести параметр в список программирования
	"Недопустимое чтение"
15	Означает, что не введен пароль или нет параметра в списке для чтения при парольном
15	чтении пользователем. Необходимо ввести пароль или, при необходимости, ввести
	параметр в список пользователя или отменить парольное чтение
	"Калибровка запрещена"
16	Означает, что произведена попытка записи технологического (метрологического)
	параметра оез права доступа. Неооходимо вскрыть счетчик (при наличии
	соответствующих прав) и установить технологическую перемычку

Таблица 3.41 – Коды ошибок при выполнении запросов

Таблица 3.41 – Коды ошибок при выполнении запросов	Таблица З.	41 – Коды	ошибок при	выполнении	запросов
--	------------	-----------	------------	------------	----------

Код ошибки	Описание сигнала
17	"Недопустимое значение параметра" Уточнить диапазон допустимых значений параметра и ввести правильное значение
18	"Отсутствует запрошенное значение параметра" Уточнить аргументы выбора запрашиваемых значений параметра и ввести правильные значения
19	"Калибровка запрещена"
20	"Ошибка измерителя" Снять со счетчика питающее напряжение. Если после подключения ошибка останется, счетчик необходимо направить в ремонт. Ошибка индицируется постоянно до устранения причины ее появления
21	"Неполадки в работе часов реального времени" Проверить правильность индикации счетчиком текущих даты и времени. Для сброса индикации ошибки произвести программирование даты или времени. Если ошибка появляется снова, включить и выключить счетчик и запрограммировать дату или время. Если ошибка не исчезает, отправить счетчик в ремонт. Ошибка индицируется циклически после каждого просматриваемого параметра
22	"Ответ на запрос превышает размер выходного буфера или размер буфера установлен равным нулю" Проверить заданный размер выходного буфера или откорректировать запрос
23	"Ошибка модуля электронной пломбы" Сбросить ошибку чтением через интерфейс или оптопорт параметра <i>STAT_</i> . Если через некоторое время ошибка появится повторно, счетчик необходимо направить в ремонт. Ошибка индицируется циклически после каждого просматриваемого параметра
30	"Признак сбоя при записи в энергонезависимую память данных" Счетчик использует резервную копию данных при записи. Сбрасывается чтением параметра состояния счетчика. При возникновении данного сообщения необходимо проверить корректность хранимых энергетических данных
36	"Ошибка контрольной суммы метрологических параметров" Требуется поверка счетчика и ввод технологических метрологических коэффициентов со вскрытием счетчика. Ошибка индицируется циклически после каждого просматриваемого параметра
37	"Ошибка контрольной суммы накапливаемых параметров" Проверить по возможности накопленную информацию на достоверность. Сбросить ошибку перепрограммированием любого параметра. Ошибка индицируется циклически после каждого просматриваемого параметра
38	"Ошибка контрольной суммы кода в памяти программ" Сбросить ошибку чтением через интерфейс или оптопорт параметра <i>STAT</i> . Если через некоторое время ошибка появится повторно, счетчик необходимо направить в ремонт. Ошибка индицируется циклически после каждого просматриваемого параметра
100	"Не выполнена инициализация ФБ"
101	В буфере <stx><etx><bcc> Пустой массив выдается при чтении параметра, запрещенного пользователю, или параметра, ненакопленного и незафиксированного на данный момент времени</bcc></etx></stx>
102	За время тайм-аута, задаваемого значением сигнала СЕЗОХ_ТА, не принято ни одного байта
103	Обнаружено искажение входящего сообщения (нарушение формата, обнаружено искажение сообщение по недопустимым кодам символов или ошибки контрольной суммы сообщения для транзакций, в которых она предусмотрена)

3.8.4 Описание работы ФБ

К одной интерфейсной линии может быть подключен один ПЛК, выполняющий функции ведущего устройства (опросчика), и до 32-х подчинённых устройств, использующих протокол ГОСТ Р МЭК 61107-2001 (IEC 61107-97) «Обмен данными при считывании показаний счетчиков, тарификации и управлении нагрузкой. Прямой локальный обмен данными».

Для обеспечения корректной совместной работы оборудования необходимо выполнить следующие действия:

1 С помощью сервисных программ производителя измерительного оборудования произвести конфигурирование параметров работы по интерфейсу *RS-485*, задав для каждого устройства уникальный адрес, одинаковую скорость передачи (рекомендуется 9600 бит/с) и единый формат данных (7.1.Е).

2 Произвести подключение устройств к линии, соблюдая полярность сигналов физического интерфейса и правила подключения устройств к интерфейсу *RS-485* (см. руководство по эксплуатации на измерительное оборудование).

Внимание! Для работы оборудования Энергомера серии CE30х по интерфейсу *RS-485* требуется наличие внешнего источника питания.

З Подготовить и сохранить в ПЛК проект с задачей пользователя с установкой выбранных выше параметров (см. шаг *1*) для опрашиваемого оборудования.

4 Подключить питание устройств, запустить проект *CoDeSys* ПЛК в режиме отладки, убедиться в корректности опроса по отсутствию ошибок выполнения транзакций (переменные *INIT_ErrCode* и *CE30X_ERR ФБ*) и совпадению значений показаний на панели индикации и в переменных программы.

Примечание – В случае возникновения ошибок в процессе обмена произвести контроль питания интерфейса, физического подключения, конфигурационных параметров интерфейса, проверить уникальность адресов и тайм-аутов выполнения транзакций.

Для создания проекта с поддержкой функций получения данных по протоколу ГОСТ Р МЭК 61107-2001 в ПЛК Элсима последовательность шагов должна быть следующая:

1 Создайте проект ПЛК Элсима согласно 2.7.

2 Создать экземпляр ФБ и объявить необходимые переменные согласно приложению <u>Д</u>.

3 Обеспечить вызов экземпляра ФБ с активацией необходимой функции для получения данных от измерительного устройства Энергомера:

3.1 Инициализация ФБ (должна выполняться один раз в начале работы программы) (см. Е.1 приложения <u>Д</u>);

3.2 Выполнение транзакции для получения данных:

– выполнение одиночной транзакции (см. Е.2 приложения Д);

– выполнение группы транзакций с открытием сессии (см. Е.З приложения Д).

Группа транзакций с открытием сессии должна состоять из следующих действий:

1) Выполнение транзакции с открытием сессии – инициализация переменных с установленными параметрами опрашиваемого устройства и выдача транзакции в режиме *"Транзакция с установкой сессии без закрытия"* (значение "*I*");

2) Продолжение работы в сессии (может быть несколько транзакций) – подготовка кода транзакции и выдача транзакции в режиме "Одиночная транзакция без установки сессии" (значение "**0**");

3) Закрытие сессии – выдача последней транзакции ".**В0.и**" (\$01 \$42 \$30 \$03 \$75).

Примечания

1 Если выдача очередной транзакции на шаге 2 или 3 будет задержана более чем на *1,2* с (зависит от конфигурации и версии ПО оборудования), то сессия закрывается автоматически, на очередную транзакцию данные не поступят и для продолжения получения данных необходимо вновь выполнить шаг *1*.

2 Для выполнения активированных функций в конце текста программы задачи пользователя обязательно вызвать созданный экземпляр ФБ (см. Е.4 приложения <u>Д</u>).

3.9 Работа со счетчиками электроэнергии Меркурий 230/233/234

Для обеспечения информационного взаимодействия ПЛК с многофункциональными приборами учета электроэнергии Меркурий 230/233/234 при использовании физического интерфейса RS-485 в состав конфигурационного пакета включена библиотека **M23XLibrary**, в которую входит ФБ **M23X** (*Device* (*ELSYMA*) \rightarrow *Plc Logic* \rightarrow *Application* \rightarrow *Meнеджер библиотек* \rightarrow *ElsyMA_M23X*, *см.* 2.7.1.2).

Вызов функций ФБ позволяет осуществить инициализацию физического интерфейса *RS-485*, используемого для подключения приборов учета электроэнергии Меркурий, обеспечивает возможность получения измеренных значений, массивов данных накопленной энергии, параметров времени и журналов событий, осуществляет контроль состояния оборудования и чтения основных параметров счётчика.

В этом разделе руководства содержится описание работы с библиотекой ФБ **м23х**, а примеры применения ФБ приведены в приложении Е.

3.9.1 Конфигурирование ФБ м23х

Применение ФБ не требует специального конфигурирования, т.к. библиотека **M23XLibrary** уже включена в состав пакета конфигуратора ПЛК. Применение вызовов ФБ в задаче пользователя *CoDeSys* обеспечивает выполнение следующих основных функций:

- инициализация физического интерфейса и переменных ФБ;
- выполнение транзакции (запроса на чтение или запись данных).

Для активации выполнения функции имеется свой управляющий сигнал. Среди входных сигналов ФБ сигналами активации являются:

• *M23X_INIT* – для инициализации физического интерфейса и переменных ФБ;

• *M23X_CONTROL* – для выполнения транзакции.

Внимание! Интерфейс *RS-485* может использоваться только одним программным модулем, поддерживающим определённый протокол взаимодействия.

При использовании функции ФБ м23х нельзя использовать интерфейс *RS-485* для других коммуникаций (таких как *Modbus RTU* и т.п.). Для этого в конфигурации проекта задачи пользователя ПЛК Элсима для устройства **RS485** в закладке *Pedakmop coeduneния* необходимо установить для параметра *Server* значение "*None*" (рисунок 3.49).

Для использования функций библиотеки **м23хLibrary** необходимо:

1 В разделе переменных создать экземпляр ФБ. Например:

FB_M23X : ElsyMA_M23X.M23X;

2 В тексте программы задачи пользователя обеспечить вызов ФБ.

Для программы на языке **ST**, при объявлении экземпляра ФБ, как указано выше, код должен быть следующий:

FB_M23X();

Контроллер программируемый логический Элсима

3 С помощью сервисных средств для оборудования Меркурий необходимо убедиться в уникальности адресов, подключаемых к одной линии счетчиков, проверить пароли доступа.

4 Выполнить физическое подключение линии согласно правилам подключений линий интерфейса *RS*-485.

Совпадение адресов приведёт к сбоям в работе и может вызвать поломку оборудования.

3.9.2 Инициализация ФБ м23х

Функция инициализации вызывается один раз в начале выполнения программы с предварительно установленными значениями параметров или параметрами "по умолчанию".

Функция инициализации обеспечивает инициализацию переменных для работы ΦF и инициализацию физического интерфейса *RS-485* ПЛК Элсима системными вызовами *CoDeSys* в соответствии со значениями входных переменных и заданного в программе имени порта (имя соответствует физическому устройству *RS-485* в составе ПЛК Элсима).

Набор переменных для выполнения инициализации ФБ приведен в таблице 3.42.

	Таблица 3.42 –	ФБ м23х. І	Входные и	выходные	переменные	для вы	полнения	инициализаі	ции
--	----------------	------------	-----------	----------	------------	--------	----------	-------------	-----

Имя	Тип	Значение "по	Описание								
		умолчанию Вход									
		Бході	Сигнал управления началом выполнения								
			инициализации ФБ.								
M23X INIT	BYTE	0	0 - функция не активна (признак разрешения работы)								
		Ŭ	лля лругих вызовов ФБ).								
			1 – активания выполнения инициализации								
			Скорость передачи данных в интерфейсе, бит/с:								
			0 - 300 *:								
			1 - 600 *:								
BoudeRate	вуте	5	2 - 1200 *:								
		_	3 - 2400 *;								
			4 – 4800;								
			4 – 4800; 5 – 9600 Тип контроля для симвода:								
			Тип контроля для символа:								
D •		0	0 - None (HeT);								
ParityBYTE 0 Тип контроля дл $0 - None (нет);$ $1 - Odd (нечёт.)$			<i>1 – Odd</i> (нечёт.);								
			2 – <i>Even</i> (чёт.)								
C4 D'4 Mars I	DV/TE	1	Количество стоп-бит в символе.								
StopBitINMD	BYIE	Ι	Количество стоп-оит в символе. Допустимые значения – 1, 2								
		Выход	ные переменные								
INIT_ErrCode	DINT		Код ошибки. Допустимые значения:								
			0 – успешная инициализация порта с заданными								
			параметрами;								
			<>0 – ошибка инициализации. Коды ошибок:								
			"-1" – ошибка инициализации СОМ-порта;								
			"-2" – ошибка тестирования передачи в СОМ-порт;								
			"-3" – ошибка тестирования приёма из COM-порта								
Примеча	ние – * I	В версии 3.5.6.1	и ниже библиотеки M23XLibrary данное значение не								
доступно											

3.9.3 Выполнение транзакции ФБ м23Х

Функция выполнения транзакции с измерительным оборудованием вызывается из задачи пользователя периодически.

Функция выполнения транзакции обеспечивает выполнение одиночных или последовательности транзакций (передачи запросов и приёма ответов по интерфейсу) с предварительной обработкой результата для контроля ошибок времени ответа, искажения данных и кода ошибки в ответе.

Внимание! Вызов функции выполнения транзакции до завершения инициализации приведёт к ошибке! Для выполнения следующей транзакции необходимо дождаться окончания уже начатой транзакции! Несоблюдение этого правила приведёт к ошибке выполнения.

Набор переменных для выполнения транзакций ФБ (управление работой, задание типа получаемых данных и контроля правильности выполнения) приведен в таблице 3.43.

T C	2 42	Φ Γ	D						
Гарина	141_	$\mathbf{OPP} \mathbf{W} \mathbf{X} \mathbf{X}$	Куолны	е и выхолн	іле пепе	менные л	іля выпл	пнения т	пянзякшии
гаолица	J. TJ	4D 112 311	рудири	с и рыході	ibic nepe	мениыс д			рапзакции

Имя	Тип	Значение "по умолчанию"	Описание			
		Вході	ные переменные			
M23X_CONTROL	BYTE	0	Сигнал управления началом выполнения транзакции: <i>0</i> – функция не активна (признак разрешения работы для других вызовов ФБ); <i>1</i> – активация выполнения транзакции. После завершения транзакции функция устанавливает значение переменной, равной "0", что является сигналом разрешения выполнения следующей транзакции			
M23X_ADR	STRING	"	Идентификатор (номер) опрашиваемого счетч (максимальный размер – 6 символов). Необход для обращения к выбранному устройству " множества подключенных к физическ интерфейсу. Переменная не используется при выполнении транзакции в режиме "Одиночная транзакция без установки сессии"			
M23X_PASS STRING " Пароль для доступа к информации (максимал размер – 255 символов) (если не используется пустая строка). " Переменная не используется при выполнении транзакции в режиме "Одиночная транзакции истористи соссии"		Пароль для доступа к информации (максимальный размер – 255 символов) (если не используется, то пустая строка). Переменная не используется при выполнении транзакции в режиме "Одиночная транзакция без установки сессии"				
установки сессии" Установки сессии" Код функции запрашиваемых данных; 1 – инициализация соединения и открытие пасессии; 2 – завершение сессии; 4 – запросы на чтение параметров времени и журналов событий; 5 – запросы на чтение массивов данных нако энергии;		Код функции запрашиваемых данных; 1 – инициализация соединения и открытие парольной сессии; 2 – завершение сессии; 4 – запросы на чтение параметров времени и журналов событий; 5 – запросы на чтение массивов данных накопленной энергии; 8 – запросы основных параметров счётчика				

Имя	Тип	Значение "по	Описание
M23X_TR	STRING	<u>ywon namno</u> "	Код запроса в соответствии с форматом, соответствующим требованиям протокола Меркурий (максимальный размер – 255 символов). Символами транзакции могут быть непечатные символы, задаваемые с помощью знака \$. Транзакция должна завершиться кодом \$00. Например, запрос накопленной энергии за текущие сутки: '\$00\$05\$40\$00\$21\$E5\$00';
M23X_TRLN	BYTE	0	Длина сообщения в строке <i>M23X_TR</i> (количество символов, передаваемых в линию)
M23X_TA	TIME	1000	Тайм-аут ожидания ответа на транзакцию. Диапазон изменения параметра – от 300 до 10000 мс, но не менее длительности цикла программы
Но не менее длительности цикла проп Режим работы транзакции: 0 – одиночная транзакция без устаной 1 – транзакция с установкой сессии б 2 – транзакция с установкой сессии с завершения транзакции. В режиме "Одиночная транзакция бе сессии" содержимое переменной M23 передаётся в линию и ожидается оди времени, заданного переменной M23 В режиме "Транзакция с установкой закрытия" устанавливается сессия и транзакция из переменной M23X_TR можно выдать несколько транзакций "Одиночная транзакция без установ. Режим "Транзакция с установкой сес после завершения транзакции" анало предыдущему, только после заверше выпаётся сигнал закрытия сессии.		Режим работы транзакции: 0 – одиночная транзакция без установки сессии; 1 – транзакция с установкой сессии без закрытия; 2 – транзакция с установкой сессии с закрытием после завершения транзакции. В режиме "Одиночная транзакция без установки сессии" содержимое переменной M23X_TR передаётся в линию и ожидается один ответ в течение времени, заданного переменной M23X_TA. В режиме "Tpанзакция с установкой сессии без закрытия" устанавливается сессия и выдаётся одна транзакция из переменной M23X_TR. После этого можно выдать несколько транзакций в режиме "Одиночная транзакция без установки сессии". Режим "Tpанзакция с установкой сессии с закрытием после завершения транзакции" аналогичен предыдущему, только после завершения транзакции выдаётся сигнал закрытия сессии: \$00\$02\$80\$71	
		Выход	ные переменные
M23X_BUSY	BOOL	0	Сигнал занятого ФБ: 0 – ФБ свободен для выполнения транзакций; 1 – ФБ занят
M23X_ERR INT 0		0	Код ошибки выполнения последней транзакции: 0 – нет ошибки; <>0 – код ошибки (часть кодов определена производителем счетчика (1–48), часть необходима для индикации ошибки работы ФБ (100–103), см. таблицу 3.44)
M23X_DATA	ARRAY [0100]		Ответ на транзакцию (максимальный размер – 100 байт). В случае ошибки значение поля неопределённое
M23X_INLN	BYTE	0	Длина принятого сообщения в строке <i>M23X_OUT</i> (количество символов, принятых из линии)

Таблица 3.43 – ФБ м2 3х. Входные и выходные переменные для выполнения транзакций

При выполнении вызова ФБ для транзакции с измерительным оборудованием могут возникнуть ошибки, список кодов, возвращаемых через переменную *M23X_ERR*, приведён в таблице 3.44.

Код ошибки	Описание сигнала
0	Нет ошибки
	Е01 Неисправность батареи питания
	Е02 Нарушено функционирование памяти № 2
	E03 Нарушено функционирование UART1
	E04 Нарушено функционирование ADS
	Е05 Ошибка обмена с памятью
	Е06 Неисправность часов
	Е07 Нарушено функционирование памяти № 3
	Е09 Ошибка целостности ПО
	Е10 Ошибка калибровочных коэффициентов
	Е11 Ошибка регистров энергии от сброса
	Е12 Ошибка сетевого адреса
	Е13 Ошибка серийного номера
	Е14 Поврежден пароль
	Е15 Ошибка массива вариантов исполнения
	Е16 Поврежден флаг тарификатора
	Е17 Поврежден флаг отключения нагрузки
	Е18 Ошибка лимита мощности
	Е19 Ошибка лимита энергии
	Е20 Ошибка параметров интерфейса
	Е21 Ошибка параметров индикации по тарифам
	Е22 Ошибка параметров индикации по периодам
	Е23 Ошибка множителя тайм-аута интерфейса
	Е24 Поврежден байт программируемых флагов
	Е25 Повреждено расписание праздничных дней
	Е26 Повреждено тарифное расписание
	Е27 Поврежден массив таймера
	Е28 Ошибка перехода зима/лето
	Е29 Ошибка местоположения прибора
	Е30 Повреждены коэффициенты трансформации
	ЕЗ1 Повреждены регистры энергии
	Е32 Ошибка параметров среза
	ЕЗЗ Повреждены регистры среза
	ЕЗ4 Ошибка указателей журнала событий
	ЕЗ5 Ошибка записи журнала событий
	ЕЗб Поврежден регистр учета технических потерь
	ЕЗ/ Ошибка мощности технических потерь
	ЕЗ8 Поврежден регистр накопленнои энергии потерь
	ЕЗУ Повреждены регистры энергии пофазного учета
	Е40 Флаг поступления широковещ. сообщения
	Е42 Ошиока записи журнала ПКЭ
	Е47 Процедура коррекции времени
100	Е48 напряжение оатареи менее 2,05 В (Пониженное напряжение питания)
100	Пе выполнена инициализация ФБ
101	В оуфере пустои массив. Выдается при чтении параметра, запрещенного пользователю,
	или параметра, ненакопленного и незафиксированного на данный момент времени
102	эа время таим-аута, задаваемого значением сигнала <i>м23А_1А</i> , не принято ни одного
102	Оонаружено искажение входящего сооощения (нарушение формата, оонаружено
103	искажение сообщение по недопустимым кодам символов или ошиоки контрольной суммы
	сооощения для транзакции, в которых она предусмотрена)

Таблица 3.44 – Коды ошибок при выполнении запросов

3.9.4 Описание работы ФБ

К одной интерфейсной линии может быть подключен один ПЛК, выполняющий функции ведущего устройства (опросчика), и до 32-х подчинённых устройств, использующих единый протокол Меркурий.

Для обеспечения корректной совместной работы оборудования необходимо выполнить следующие действия:

1 С помощью сервисных программ производителя измерительного оборудования произвести конфигурирование параметров работы по интерфейсу RS-485, задав для каждого устройства уникальный адрес, одинаковую скорость передачи (рекомендуется 9600 бит/с) и единый формат данных (8.1.N).

2 Произвести подключение устройств к линии, соблюдая полярность сигналов физического интерфейса и правила подключения устройств к интерфейсу RS-485 (см. руководство по эксплуатации на измерительное оборудование).

Внимание! Для работы оборудования Меркурий серии **м23х** по интерфейсу *RS-485* требуется наличие внешнего источника питания.

З Подготовить и сохранить в ПЛК проект с задачей пользователя с установкой выбранных выше параметров (см. шаг *1*) для опрашиваемого оборудования.

4 Подключить питание устройств, запустить проект *CoDeSys* ПЛК в режиме отладки, убедиться в корректности опроса по отсутствию ошибок выполнения транзакций (переменные *INIT_ErrCode* и *M23X_ERR* **Ф***Б*) и совпадению значений показаний на панели индикации и в переменных программы.

Примечание – В случае возникновения ошибок в процессе обмена произвести контроль питания интерфейса, физического подключения, конфигурационных параметров интерфейса, проверить уникальность адресов и тайм-аутов выполнения транзакций.

Для создания проекта с поддержкой функций получения данных по протоколу ГОСТ Р МЭК 61107-2001 в ПЛК Элсима последовательность шагов должна быть следующая:

1 Создайте проект ПЛК Элсима согласно 2.7.

2 Создать экземпляр ФБ и объявить необходимые переменные согласно приложению <u>Д</u>.

3 Обеспечить вызов экземпляра ФБ с активацией необходимой функции для получения данных от измерительного устройства Меркурий:

- 3.1 Инициализация ФБ (должна выполняться один раз в начале работы программы) (см. Ж.1 приложения E);
- 3.2 Выполнение транзакции для получения данных:
- выполнение одиночной транзакции (см. Ж.2 приложения E);

– выполнение группы транзакций с открытием сессии (см. Ж.3 приложения Е).

Группа транзакций с открытием сессии должна состоять из следующих действий:

1) Выполнение транзакции с открытием сессии – инициализация переменных с установленными параметрами опрашиваемого устройства и выдача транзакции в режиме "*Транзакция с установкой сессии без закрытия*" (значение "*I*");

2) Продолжение работы в сессии (может быть несколько транзакций) – подготовка кода транзакции и выдача транзакции в режиме "Одиночная транзакция без установки сессии" (значение "**0**");

3) Закрытие сессии – выдача последней транзакции ".B0.u" (\$01 \$42 \$30 \$03 \$75).

Примечания

1 Если выдача очередной транзакции на шаге 2 или 3 будет задержана более чем на *1,2* с (зависит от конфигурации и версии ПО оборудования), то сессия закрывается автоматически, на очередную транзакцию данные не поступят и для продолжения получения данных необходимо вновь выполнить шаг *1*.

2 Для выполнения активированных функций в конце текста программы задачи пользователя обязательно вызвать созданный экземпляр ФБ (см. Ж.4 приложения Е).

3.10 Работа с модулем GSM для приёма и передачи SMS сообщений

ПЛК в исполнении Элсима-M01-ZZZU-GSM имеет встроенный GSM-модем, который позволяет осуществлять приём и отправку SMS сообщений из задачи пользователя.

Встроенный модем обеспечивает возможность работы в сетях GSM с диапазоном частот 850/900/1800/1900 МГц, что обеспечивает возможность работы с операторами сетей второго поколения (2G, 2.5G) по всему миру. Приём и отправка коротких сообщений возможна из любых сетей, поддерживающих этот сервис (т.е. из сетей 3G, 4G и др.).

Для удобства работы с модулем **GSM** в состав конфигурационного пакета ПЛК входит специально разработанный для него функциональный блок **GSM** (*Device* (*ELSYMA*) \rightarrow *Plc Logic* \rightarrow *Application* \rightarrow *Meнеджер библиотек* \rightarrow *ElsyMA_GSM*, *см.* 2.7.1.2). Вызовы этого ФБ **GSM** позволяют осуществить выдачу необходимых последовательностей управляющих воздействий и АТ-команд с контролем правильности выполнения для безошибочного выполнения всех разрешённых действий.

В этом разделе руководства содержится описание работы с библиотекой ФБ **GSM** и примеры их применения.

ВНИМАНИЕ! Перед использованием выполнить подключения.

Для использования функций модуля **GSM** необходимо выполнить подключения антенны согласно 1.8.5 (см. примечание 1) и установку SIM-карты согласно 1.8.4 (см. примечание 2).

Примечания

1 При подключении антенны необходимо убедиться, что её частотный диапазон соответствует диапазону используемой сети сотового оператора. Особенно это важно в условиях "плохой видимости станций", т.е. низкого уровня сигнала GSM, связанного с большим удалением от базовой станции или нахождения антенны в области радиотени (работе могут мешать здания, возвышенности, деревья, линии электропередач и т.п.). При необходимости, можно использовать антенну с большим коэффициентом усиления или повторитель соответствующего частотного диапазона. Для диапазона 850/900 МГц модуль соответствует классу мощности "4" (2 Вт), для диапазона 1800/1900 МГц – класс мощности "1" (1 Вт).

2 В связи с относительно высокой стоимостью передачи информации текстовыми сообщениями, рекомендуется использовать SIM-карту со специальным тарифом для передачи SMS или подключенной услугой пакета SMS.

Контроллер программируемый логический Элсима

Для успешной работы с модулем **GSM**, без выполнения лишних команд в теле программы ПЛК, перед использованием SIM-карты в модуле **GSM** рекомендуется подготовить её к работе, выполнив следующие действия:

1 Убедиться в наличии разрешённых функций приёма и отправки SMS.

Обычно эти функции в современных сетях для большинства тарифов разрешены "по умолчанию", но для определённых тарифов и операторов связи требуется отдельная активация услуг.

2 Выполнить запрет приёма информационных SMS сотового оператора.

Например, для МТС:

• Подключить услугу "Запрет приема информационных SMS и SMS/MMS с сайта MTC";

- Отключить услугу "Вам звонили";
- Отключить услугу "Автоинформирование о балансе";
- Произвести запрет входящих вызовов (услуга может быть платной).

3 Отключить запрос PIN кода.

Если на SIM-карте установлен PIN код, перед использованием модуля будет необходимо выдать команду "AT+CPIN=pin".

4 Очистить историю SMS-сообщений, находящихся на SIM-карте.

5 Установить адреса центра обработки SMS сотового оператора.

6 Убедиться в наличии средств на SIM-карте, достаточных для работы, и своевременно их пополнять (в процессе работы контроль доступен вызовом АТ-команды).

3.10.1 Конфигурирование модуля GSM

Для работы с модулем **GSM** в состав пакета конфигуратора ПЛК включена библиотека **GSMLibrary** (дополнительное имя: **ElsyMA_GSM**). Для применения в задаче пользователя *CoDeSys* из этой библиотеки доступен функциональный блок **ELSYGSM**, обеспечивающий выполнение следующих основных функций:

- инициализация модуля **GSM**;
- отправка АТ-команды;
- отправка текстового сообщения (SMS);
- приём текстового сообщения (SMS);
- аппаратный рестарт модуля GSM.

Для включения в проект экземпляра функционального блока необходимо в разделе переменных указать переменную с типом **ElsyMA_GSM.ELSYGSM**.

Интерфейс ФБ представлен на рисунке 3.50.

Для каждой функции имеется сигнал активации. Среди входных сигналов сигналами активации являются:

- controlreset для функции "Annapamный рестарт модуля GSM";
- controlinit для функции "Инициализация модуля GSM";
- controlsendsms для функции "Отправка текстового сообщения (SMS)";
- controlreadsms для функции "Приём текстового сообщения (SMS)";
- controlat для функции "Передача АТ-команды".

🎢 Менеджер библиотек	×	÷
🏝 Добавить библиотеку 🗙 Уда	алить библиотеку 🛛 🚰 Свой	іства 📵 Детали 📃 💂
Имя Standard = Standard, 3.5.3 BreakpointLogging = Break IoStandard = IoStandard, 3 EleSyTypes, 1.0.0.1 (EleSy EleSyTecLib, 1.0.0.1 (EleSy COMLibrary, 3.5.6.10 (EleT) Standard = IoStandard, 3 COMLibrary, 3.5.6.12 (EleT)	5.0 (System) point Logging Functions, 3.5.5 3.5.6.0 (System) Company) Company) Team) eam)	.0 (35 - Smart Software Solutions GmbH)
<)
gsmlibrary GlobalVariables GlobalVariables Types	Входы/Выходы Графич. — controlreset <i>ВУТЕ</i> — controlinit <i>ВУТЕ</i> — controlsendsms <i>ВУТЕ</i> — controleadsms <i>ВУТЕ</i> — controlat <i>ВУТЕ</i> — controlat <i>ВУТЕ</i> — recvmode <i>ВУТЕ</i> — credat <i>STRING</i> — ptat <i>TIME</i> — textsms <i>STRING</i> — numbersms <i>STRING</i>	Документация ELSYGSM BOOL isbusy DINT error STRING(255) recvbuf STRING(255) recvat STRING(255) recvat STRING recvnumber BOOL isreadysms BOOL isbadreadsms

Рисунок 3.50 - Функциональный блок ELSYGSM

Для активации функции необходимо присвоить значение "*1*" для соответствующей управляющей переменной. Для инициализации GSM необходимо присвоить значение "*1*" для переменной *controlinit*:.

Кроме управляющих сигналов некоторые функции имеют дополнительные сигналы. Значения дополнительных входных сигналов необходимо обязательно инициировать до активации соответствующей функции. Каждая функция имеет свой набор дополнительных сигналов, перечисленных ниже, и на выполнение других функций они влияния не оказывают.

Для функции "Передача АТ-команды" дополнительными сигналами являются:

• Входные сигналы:

 \Box *страя* – строка длиной до 70 символов, которая должна содержать код выполняемой АТ–команды, завершающаяся символами *\$R\$R\$n*. Например, *'AT+CUSD=1, "#100#"\$R\$R\$n'*;

 \Box *ptat* – тайм-аут выполнения команды. Время, по истечении которого должен быть получен ответ. Тип переменной – *TIME*. Например, для присвоения значения 5 с: *T#5S*;

• Выходные сигналы:

□ *recvat* – ответ на выполненную АТ-команду.

Примечание – В стандарте ответ предусмотрен не для всех АТ-команд, а некоторые команды могут выполняться десятки секунд (см. руководство версии 1.08 "SIM800 Series AT Commands Manual", файл SIM800_Series_AT_Command_Manual_V1.08.pdf), поэтому необходимо устанавливать соответствующее значение для сигнала ptat. Завершение выполнения команды в любом случае будет по истечении времени тайм-аута. Для функции "Отправка текстового сообщения (SMS)" дополнительными являются входные сигналы:

□ *textsms* – текст передаваемого SMS-сообщения длиной до 160 символов, содержащий код печатных ASCII символов из диапазона (32–126), например, 'test message';

□ *numbersms* – телефонный номер абонента, для которого предназначены SMSсообщения, например, '8961XXXXXX'.

Для функции "Приём текстового сообщения (SMS)" дополнительными сигналами являются:

• Входные сигналы:

□ controlreadsms – (BOOL) разрешение приёма SMS-сообщений;

• Выходные сигналы:

□ *isbadreadsms* – (*BOOL*) ошибка приёма SMS-сообщений – сигнал, принимающий следующие значения:

"*TRUE*" – нет готовых SMS-сообщений в буфере приёма;

"*FALSE*" – успешный приём сообщения.

□ *recvnumber* – номер абонента в принятом сообщении (если удалось его распознать, т.к. составные SMS и SMS оператора не имеют номера);

□ *recvsms* – текст SMS-сообщения, включая служебную информацию о номере абонента и времени приёма. Длина сообщения до 160 печатных *ASCII* символов из диапазона (*32–126*).

Примечания

1 Возможен приём SMS длиной не более 160 символов. Сообщения, превышающие эту длину, будут переданы оператором связи отдельными SMS без указания номера источника сообщения во второй и последующих частях. В некоторых случаях, при сбоях сети оператора, встречались пропадание частей сообщения или перестановка их местами.

2 Следует обратить внимание, что строковая переменная в *CoDeSys* имеет длину, не превышающую 70 символов, в случае необходимости можно увеличить размер строки для переменной программы пользователя (см. руководство пользователя на систему программирования *CoDeSys*).

3 Формат принятого сообщения в буфере *recvsms* имеет вид: '4,"REC UNREAD","+79XXXXXXX","","16/02/26,15:34:26+24 "\$R\$NTEST SMS 1\$R\$N\$R\$N', в котором:

- 4 номер буфера в памяти GSM модуля, в который было принято сообщение;
- "REC UNREAD" признак того, что сообщение ни разу не прочитано из буфера;
- "+79XXXXXXXX" номер отправителя;
- "" служебное поле (может быть ненулевой длины);
- "16/02/24,12:34:26+24" дата и время приема сообщения;
- TEST SMS 1 текст сообщения.

Для функций "*Аппаратный рестарт модуля GSM*" и "*Инициализация модуля GSM*" дополнительных сигналов не предусмотрено.

Существует два выходных сигнала, являющихся общими для ФБ, и их значения устанавливаются при выполнении любой функции ФБ:

□ *isbusy* – сигнал занятого ФБ. Устанавливается в "*1*" (*TRUE*) при активации любой команды. Сбрасывается в "*0*" (*FALSE*) автоматически, после завершения выполнения команды (успешной или по ошибке). При значении "*1*" этого сигнала новые команды активировать запрещается;

□ *error* – код ошибки выполнения команды ФБ модуля **GSM**.

Возможны следующие коды ошибок:

- "0" нет ошибки выполнения команды;
- "-1" при выполнении команды возникла ошибка системного интерфейса;
- "-2" превышен размер буфера при приёме ответа;
- "-3" модуль **GSM** не готов к работе. Причиной возникновения ошибки может быть:
 - □ сбой при получении ответа;
 - □ отсутствует SIM-карта;

□ не удалось зарегистрироваться в сети из-за слабого сигнала.

В случае возникновения такой ошибки рекомендуется повторная инициализация, после трех сбоев необходимо проверить внешние подключения и SIM-карту;

• "-4" – ошибка выполнения функции "Передача АТ-команды", за время тайм-аута не получено ни одного ответного символа на команду (для команд без ответа – это нормальная ситуация). Данный код ошибки является предупреждением, сохраняется возможность работы с ФБ, для детализации причины возникновения данного предупреждения смотри значение выходного сигнала *recvat*;

- "-5" ошибка выполнения функции "Отправка текстового сообщения (SMS)";
- "-6" ошибка выполнения функции "Приём текстового сообщения (SMS)".

Если значение сигнала ошибки от выполнения команды (*error*) необходимо для работы программы, то перед активацией ФБ необходимо сохранить это значение в локальной переменной.

Для применения функций в задаче пользователя *CoDeSys* необходимо соблюдать следующий порядок вызова функций:

1 Вызов функции "Инициализация модуля GSM".

2 Опционально: "Периодический вызов АТ-команды" (например, для контроля баланса денежных средств на счете SIM-карты).

3 Опционально: Вызов функции "Отправка текстового сообщения (SMS)", если необходимо обеспечить отправку данных на сотовый телефон по событиям в программе.

4 Опционально: Если необходимо осуществлять управление логикой выполнения программы по командам через сотовую связь, то выполнять периодический вызов функции "Приём текстового сообщения (SMS)".

В случае сбоя модуля **GSM** (например, из-за помехи или выключения модуля AT-командой) рекомендуется выполнить вызов функции "*Annapamный рестарт модуля GSM*".

Модуль **GSM** поддерживает большой набор команд в соответствии со спецификациями:

• ITU-T recommendation V.25ter "Serial asynchronous automatic dialling and control";

• GSM 07.07 / 3GPP TS27.007 (ETS 300 916): "Digital cellular telecommunications system (Phase 2+); AT command set for GSM Mobile Equipment (ME)".

Основные команды для работы с GSM-модемом представлены в таблице 3.45.

Команда	Ответ	Комментарии
1 Проверка доступности интерфейса с модул	IEM GSM	· · · · · · · · · · · · · · · · · · ·
AT	ОК	В случае получения "ОК", можно продолжать работу. В случае отсутствия ответа (модуль GSM недоступен), необходимо выполнить " <i>Annapamный рестарт модуля</i> <i>GSM</i> "
2 Проверка готовности SIM-карты	CDD1 CODE	E CODE
	+СРІN: <СОДЕ> ОК Пример ответа:	Если поле <code> в ответе содержит значение "READY" и получен "OK" отдельной строкой, можно продолжать работу.</code>
	+CPIN: READY	<pre><code> = "NOT INSERTED":</code></pre>
AT+CPIN?	ОК	- отсутствует SIM-карта. <code> = "SIM PIN": SIM-карта защищена PIN кодом.</code>
	Пример ответа:	<code> = "+CPIN: NOT READY" Модуль GSM не готов к работе</code>
	ERROR	В случае получения ошибки для продолжения работы необходимо её устранить.
3 Проверка состояния модуля		
AT+CPAS	+CPAS: 0	Информация о состояние модуля: 0 – готов к работе; 2 – неизвестно; 3 – входящий звонок; 4 – голосовое соединение
4 Установить время модуля GSM	ou	
AT+CCLK="YY/MM/DD,HH:MM:SS±zz"	OK	Формат "уу/MM/dd,hh:mm:ss±zz", где уу -год, MM-месяц, dd - день, hh - час, mm - минута, ss - секунда, zz - смещение в четверть часовых интервалов относительно "времени по Гринвичу" (GMT). Допустимый диапазон для zz: -47+48. Для Томска (GMT + 06:00), команда для установки времени будет иметь вид: 'AT+CCLK="15/10/09,09:00:00+24"
5 Salipoc oanahca $\Delta T \pm CUSD = 1$ "#100#"		
(для Мегафон и МТС) AT+CUSD=1,"#102#" (для Билайн ("Вымпелком"))	OK +CUSD: 0, "Balance:15r ", 15	Вид сообщение о сумме баланса зависит от подключенного тарифа и оператора связи
о проверка доступности сети	+CREG: A B	Тип регистрации сети А.
AT+CREG?	Пример ответа: +CREG: 0,1	 1 ип регистрации сети А: 0 – нет кода регистрации сети; 1 – есть код регистрации сети; 2 – есть код регистрации сети +доп. параметры. Тип регистрации сети В:

Таблица 3.45 – Основные АТ-команды модуля GSM

Команда	Ответ	Комментарии
	ОК	0 – не зарегистрирован, поиска
		сети нет;
		<i>I</i> – зарегистрирован, домашняя
		2 – не зарегистрирован, идет поиск
		5 – регистрация отклонена,
		5 - poymulur
7 Запрос уровня сигнала		5 – роумині
		Запрос уровня сигнала.
		АА – Уровень сигнала (больше
		значение – лучше):
		0 -115 дБ и меньше;
		1 -112 дБ;
		230 -11054 дБ;
		31 -52 дБ и выше;
АТ+СSQ 8 Запрос имени сети оператора GSM	+CSQ: AA,BB OK	99 – нет сигнала. BB – качество принимаемого сигнала (меньшее значение – лучше) 0 – BER < 0.1 % 1 – 0,26 % < BER < 0,30 % 2 – 0,51 % < BER < 0,64 % 3 – 1,00 % < BER < 1,30 % 4 – 1,90 % < BER < 2,70 % 5 – 3,80 % < BER < 5,40 % 6 – 7,60 % < BER < 11,0 % 7 – BER > 15,0 %
8 Запрос имени сети оператора GSM	~~~~	Saunaa uwauu aananwarnunana
AT+COPS?	+COPS: 0,0,"Operator Name" Пример ответа: +COPS: 0,0,"MTS RUS"	запрос имени зарегистрированной сети. Орегаtor Name – Имя сети оператора, через которую производится работа модуля GSM. В примере это сеть "MTS RUS" (Российский MTC)

Таблица 3.45 – Основные АТ-команды модуля GSM

Последовательность шагов для создания проекта с поддержкой функций передачи данных через сеть GSM в ПЛК должна быть следующая:

1 В дерево устройств *Device* (ELSYMA) добавить коммутационную панель **Elsyma_BN** согласно 2.7.1.3.

В составе ПЛК для устройства **Elsyma_BN** автоматически будет создано два модуля:

- ModuleCP - основной управляющий модуль ПЛК;

- ExtBlocks – модуль УВВ ПЛК Элсима.

2 В ветку Elsyma_BN -> ModuleCP добавить устройство ElSYMA_M01_GSM. Для этого переместить указатель в дереве устройств на ModuleCP и в меню добавления устройств выбрать ElSYMA_M01_GSM с наибольшей версией (или конкретный номер версии, если этого требует проект) (см. рисунок 3.51).

🖬 Доба	🖥 Добавить устройство 🛛 🔀							
Iduar	ELSYMA MO	1. CSM						
MW243	ELSTIMA_MU	1_05M						
Дейст	гвие:							
<u>о д</u> о	бавить устро	йство () <u>В</u> ставить уст	ройство 🔘 🗋 одкли	очить устройство	О Обновить устройство			
Устро	ойство:							
Произ	волитель:	All vendors >						
- ports			1	1				
Имя			Производитель	Версия	<u> </u>			
	😑 - 🛗 При	оцессорные модули						
		ELSYMA_M01	EleSy Company	1.0.0.4774				
	- 11	ELSYMA_M01	EleSy Company	1.0.0.5697				
		ELSYMA_M01_GSM	EleSy Company	1.0.0.4968				
	···· 11	ELSYMA_M01_GSM	EleSy Company	1.0.0.5697	~			
			\ \					
	гооражать все	е версии (для экспертов) ю катогориям)					
	уппировать п	ю категориям						
	жазать устар	евшие версии						
C. Decidence								
Инфо	рмация:							
<u> </u>	Имя: ELSYM	A_MU1_GSM (TERL: EleSy Company		<u>^</u>				
	Группы: Пр	оцессорные модули						
	Версия: 1.0	.0.5697						
	номер мод	LENNE ELSYMA_MOI_GSM		<u> </u>				
Лоба	вить выбра	нное устройство как	после днего поток	IKA				
Modu	leCP		incence quice o no ron					
. .	(можно выора	ать другои таргет-узел,	пока окно открыто.)				
				C				
				Добавить	устройство Закрыть			

Рисунок 3.51 – Окно выбора типа ПЛК (устройство ELSYMA_M01_GSM)

3 В окне проекта для устройства **ELSYMA_M01_GSM** -> **GSM** -> **SimpleGSM** в первой вкладке "*ElsyMA.GSM Coomhecenue входов/выходов*" должно быть три сигнала, представленных на рисунке ниже:

- выходной сигнал *Power* (%QB9);
- выходной сигнал *PowerKey* (%QB10);
- входной сигнал *State* (%IB224).

Необходимо осуществить "соотнесение" этих сигналов с соответствующими сигналами функционального блока, указав соответствующее имя в столбец "Переменная" для каждого канала, как показано на рисунке 3.52:

- "Application.ElsyMA_GSM.power" для канала Power;
- "Application.ElsyMA_GSM.powerkey" для канала PowerKey;
- "Application.ElsyMA_GSM.state" для канала State.

ELSYMA_TEST_GSM_v0005.project - CODESYS					
Файл Правка Вид Проект Компиляция Онлайн О	тладка Инструменты Окно Справка				
🗎 😅 🖬 🕘 🗠 🖓 ங 🗈 🗙 🖊 😘 🖷	🛅 - 📑 🎬 🐝 🧐 🕟 🔳 🤻	Ç≣ ⊊∃ ¢ <u>∃</u>	+≣ \$ ¢		
Устройства 🚽 🗸 🗸	🎢 Менеджер библиотек 👔	5impleGSM >	۲.		
ELSYMA_TEST_GSM_V0005	🗮 ElsyMA.GSM Соотнесение входов/вых	одов Редакто	р соединени	я Состоян	ие 🗼 Ин
	Каналы				
🖃 🕋 Elsyma_BN (Elsyma_BN)	Переменная	Соотнесение	Канал	Адрес	Тип
🖨 🚡 ModuleCP		€2	Power	% QB9	BYTE >
🖹 👘 ELSYMA_M01_GSM (ELSYMA_M01_GSM)	Application.ElsyMA_GSM.powerkey	¶\$	PowerKey	%QB10	BYTE 5
- 🔟 CPU_INFO (CPU_INFO)	🔤 🧤 🕸 Application.ElsyMA_GSM.state	۵.	State	%IB224	BYTE C
SoftModules (SoftModules)					
🔤 📶 Lan1 (Lan1)					
R5485 (R5485)					
DefHost (DefHost)					
Peripheral (Peripheral)					
CXLDIULKS					

Рисунок 3.52 – Окно назначения сигналов для модуля SimpleGSM

Также возможно управление выходными сигналами и контроль состояния модуля **GSM** через обращение к соответствующим каналам и сигналам из программы пользователя, но для упрощения работы рекомендуется использовать ФБ и указанные сигналы. Ниже приведено описание работы с каналами, если не использовать функциональный блок **GSM**.

Выходной сигнал *Power* (%QB9) служит для управления питанием модуля **GSM**. Установка значения "*1*" для этого сигнала обеспечивает подачу питания на модуль **GSM** и перевод в состояние "*включен*". Значение "*0*" приводит к аппаратному выключению.

По старту приложения *CoDeSys*, значение сигнала соответствует состоянию "выключен" ("0").

После разрешения подачи питания сигналом *Power*, модуль **GSM** включается в "спящем" режиме. В этом режиме сеть GSM недоступна и потребление модуля минимально.

Перевод в рабочее состояние ("активный" режим) осуществляется сигналом *PowerKey* (%QB10). Отрицательный импульс длительностью *l* с переводит модуль из "спящего" режима в "активный".

Входной сигнал State позволяет проконтролировать состояние модуля GSM.

Значение "*1*" для этого сигнала означает готовность модуля к работе, т.е. на модуле присутствует стабильное питание и модуль переведён в "активный" режим.

При значении "О" для этого сигнала работа с модулем **GSM** невозможна.

Если в проекте каналы управляются сигналами ФБ (выполнено соотнесение, как на рисунке 3.52), то функция "Инициализации модуля GSM" осуществляет все необходимые действия с сигналами *power* и *powerkey*, соответственно, для пользователя они становятся недоступны.

4 В программе пользователя для ПЛК в ветке "*Plc Logic*" – "*Application*" – "*PLC_PRG* (*PRG*)" или "*Конфигурация задач*" – "*MainTask*" – "*PLC_PRG*" в секции переменных добавить переменные для работы с ФБ **GSM**.

Обязательно включить в проект экземпляр функционального блока, указав переменную с типом **ElsyMA_GSM.ELSYGSM**.

Кроме этого могут потребоваться дополнительные переменные.

Пример применения функций ФБ **GSM** приведён в приложении Ж.

Функция "Инициализации модуля GSM" обеспечивает подачу питания на модуль GSM, переводит его в активный режим, инициализирует системный интерфейс для передачи команд модулю GSM, обеспечивает проверку доступности и исправности модуля GSM, наличие SIM-карты и доступность сети оператора, выполняя команды:

- "Проверка готовности SIM-карты" (команда AT+CPIN?);
- "Проверка состояния модуля" (AT+CPAS);
- "Проверка уровня сигнала" (AT+CSQ).

Функция "Передача АТ-команды" требует её подготовки в буфере ".cmdat" и установки длительности тайм-аута получения ответа в переменной ".ptat" (длительность выполения команд зависит от её типа и может составлять от 0,1 до 30,0 с).

Функция "Отправка текстового сообщения (SMS)" требует подготовки в буфере ".textsms" текста сообщения (цифры и латинские буквы) и указания номера телефона в переменной ".numbersms".

Для приёма SMS, в теле программы, необходимо периодически активизировать сигнал ".controlreadsms", разрешающий выполнение функции "Приём текстового сообщения (SMS)", и проверять сигналы готовности, кода ошибки и буфер принятого сообщения.

3.11 Интерфейс LAN1

В данном подразделе представлено описание аппаратных интерфейсов, доступных для работы с сетью *Ethernet* в модуле центрального процессора. Доступные аппаратные интерфейсы для работы с *Ethernet* отражаются в дереве устройств в ветке *Lan1* (рисунок 3.53).

Рисунок 3.53 – Дерево устройств. Аппаратные интерфейсы модуля центрального процессора

Настройка аппаратного интерфейса *Lan1* выполняется с помощью следующих операций:

5 Настройка конфигурационных параметров *Lan1* (см. 3.11.1).

6 Добавление IP-слота и настройка его параметров (см. 3.11.3).

7 Добавление коммуникационного слота *CommSlot* и настройка его параметров (см. 3.11.4).

3.11.1 Настройка интерфейса Ethernet

Для работы с сетью *Ethernet* используется модуль *Lan1* (в других модификациях контроллера возможно наличие нескольких физических интерфейсов *Ethernet*). Настройка аппаратного интерфейса *Lan1* выполняется в системе *CoDeSys*, на закладке просмотра и настройки модуля *Lan1*.

Для настройки аппаратного интерфейса необходимо:

1 Задать конфигурационные параметры модуля Lan1 (см. 3.11.2).

2 Добавить IP-слот (см. 3.11.3).

3 Добавить коммуникационный слот (см. 3.11.4).

4 Настроить адрес шлюза (см. 3.12).

3.11.2 Настройка параметров Lan1

Для выполнения операции следует:

1 Открыть закладку просмотра и настройки модуля Lan1, выделив имя интерфейса в дереве устройств и дважды нажав левую кнопку "мыши".

2 Перейти на закладку *Редактор параметров* (рисунок 3.54) и настроить соответствующие параметры модуля.

	ация М	одуля	
Имя		Значение	Описание
Eth_Speed		10	Скорость работы интерфейса, МБит/с
Duplex		HalfDuplex	Режим работы интерфейса
AutoNegotia	ation	Off	Автоопределение параметров
 Системи 	ные Пар	аметры Модуля	
Имя	Знач	ение	Описание
SetMode	A	utoNegotiation	Режим работы интерфейса

Рисунок 3.54 – Модуль Lan1. Закладка Редактор параметров

Конфигурационные параметры модуля Lan1 представлены в таблице 3.46.

Имя параметра	Значение ''по умолчанию''	Описание параметра	
	Инфо	ормационные параметры	
Eth_Speed	10	Скорость работы интерфейса, Мбит/с	
Duplex	HalfDuplex	Режим работы интерфейса	
AutoNegotiation	Off	Автоопределение параметров	
	Системные параметры		
SetMode	AutoNegotiation	Установка режима работы интерфейса. Допустимые	
		значения:	
		• Speed10_Half;	
		• Speed10_Full;	
		• Speed100_Half;	
		• Speed100_Full;	
		AutoNegotiation	

Таблица 3.46 – Конфигурационни	ые параметры аппаратн	ого интерфейса Lan_1
--------------------------------	-----------------------	----------------------

На рисунке 3.55 представлен вид закладки *Соотнесение входов/выходов* модуля Lan1 со статистическими параметрами.

актор параметров 🛛 🗮 Соотнесение входо	в/выходов С	остояние	🦆 Информаци:	a	
алы					
ременная	Соотнесение	Канал	Адрес	Тип	Описание
🧀 Statistic					
🖶 🦘 Application.PLC_PRG.LAN1_BusStat	~⊘	BusStat	%ID134		Структура основной диагностики работы интерфейса
**		tx_cnt	%ID134	UDINT	Счетчик переданных кадров
**		rx_cnt	%ID135	UDINT	Счетчик принятых кадров
🍫		rx_a_err	%ID136	UDINT	Счетчик некорректно полученных кадров
🍫		rx_crc_err	%ID137	UDINT	Количество ошибок CRC при приеме
🍫		rx_bad_f	%ID138	UDINT	Пришли кадры, которые не должны были поступить при приеме
🍫		tx_dma	%ID139	UDINT	Переполнение буфера на передачу
🍫		tx_doubl	%ID140	UDINT	Выдача дублей на передачу
🍫		status	%ID141	UDINT	Регистр статуса: 0 – работа не 1-15 – ошибка
L		timestamp	%ID142	UDINT	Метка времени формирования сигналов диагностики
👾 - 🍫		BusStatExt	%ID143		Структура расширенной диагностики работы интерфейса
Mapplication.PLC_PRG.LAN1_LinkState	€``	LinkState	%IB644	BYTE	Состояние соединения: 0 - соединение отсутствует, 1 - есть соединение

Рисунок 3.55 – Модуль Lan1. Закладка Соотнесение входов/выходов

В таблице 3.47 представлено описание статистических параметров.

Имя параметра	Тип	Описание параметра
BusStat		Структура основной диагностики работы интерфейса
tx_cnt	UDINT	Счетчик переданных кадров
rx_cnt	UDINT	Счетчик принятых кадров
<i>rx_a_err</i>	UDINT	Счетчик некорректно полученных кадров
<i>rx_crc_err</i>	UDINT	Количество ошибок CRC при приеме
rx_bad_frames	UDINT	Пришли кадры, которые не должны были поступить при приеме
tx_dma_overflow	UDINT	Переполнение буфера на передачу
tx_double_frames	UDINT	Выдача дублей на передачу
status	UDINT	Регистр статуса: 0 – работа, 1-15 – ошибка
timestamp	UDINT	Метка времени формирования сигналов диагностики
BusStatExt	(Структура расширенной диагностики работы интерфейса
runt_err	UDINT	Фрагментированный (сбойный) кадр (меньше 64 байтов)
len_err	UDINT	Ошибка длины кадра
out_of_err	UDINT	Счетчик кадров с размером больше допустимого (длина кадра
		больше максимального размера)
mii_rxer	UDINT	Счетчик некорректно полученных кадров по интерфейсу МІІ
jabber_tout	UDINT	Тайм-аут передачи сообщений о возникновении ошибки

Имя параметра	Тип	Описание параметра
loss_of_carrier	UDINT	Потеря несущей
late_collision	UDINT	Поздняя коллизия (за пределами временного окна коллизии)
frame_underflow	UDINT	Обнуление кадра данных
excessive_defferal	UDINT	Избыточная отсрочка
excessive_collision	UDINT	Избыточная коллизия
dribble_bit_err	UDINT	Битовая ошибка
mii_err	UDINT	Ошибка интерфейса МІІ
broadcast_cnt	UDINT	Счетчик широковещательных пакетов данных
min_time	UDINT	Минимальное зафиксированное время в период от постановки
		кадра в DMA до получения подтверждения на него
avg_time	UDINT	Среднее зафиксированное время в период от постановки кадра в
		DMA до получения подтверждения на него
max_time	UDINT	Максимальное зафиксированное время в период от постановки
		кадра в DMA до получения подтверждения на него
status	UDINT	Регистр статуса: 0 – работа, 1-15 – ошибка
timestamp	UDINT	Метка времени формирования сигналов диагностики
LinkState	BYTE	Состояние физического соединения: 0 – соединение отсутствует, 1
		– соединение установлено

Таблица 3.47 – Статистические параметры программного модуля Lan1

3.11.3 Добавление ІР-слота и настройка его параметров

В дереве устройств в ветке *LAN1* существует возможность добавить *IP* для слота с помощью команды *Добавить устройство*... контекстного меню. Системные параметры IP-слота приведены в таблице 3.48.

Таблица 3.48 – Системные параметры ІР-слота

Имя параметра	Тип	Описание параметра
IP-Address	STRING	IP-адрес порта
Mask	STRING	Сетевая маска
Gateway	STRING	Адрес шлюза

На рисунке 3.56 представлен вид закладки *Соотнесение входов/выходов* IP-слота со статистическими сигналами, отображающими состояние IP-слота.

CPU_INFO 📑 Lan1	📑 IP 🗙					
Редактор параметров 🛛 🗮 Соо	тнесение входов	(выходов Состояние	🚺 🤹 Информ	ация		
Каналы						
Переменная	Соотнесение	Канал	Адрес	Тип	Единица	Опи
🖃 🔤 Statistic						
¥ø		ConnectionCount	%IW	UINT		
🍫		VServerCon	%IB	BYTE		
🍾		TXCount	%ID	UDINT		
* >		RXCount	%ID	UDINT		
* >		RXError	%ID	UDINT		

Рисунок 3.56 – Модуль ІР. Закладка Соотнесение входов/выходов

3.11.4 Добавление коммуникационного слота CommSlot

В дереве устройств в ветке *IP* возможно добавить коммуникационный слот *CommSlot* с помощью команды *Добавить устройство...* контекстного меню. Конфигурационные параметры слота *CommSlot* представлены в таблице 3.49.

Имя параметра	Значение ''по умолчанию''	Описание параметра
Port	502	Порт заданного коммуникационного слота
MaxConnections	4	Количество разрешённых соединений для серверных
		каналов. Диапазон значений – от 1 до 4
ModeTransport	TCP Server	Режим работы транспортного уровня. Возможные
		значения:
		• $0 - TCP$ Server;
		• 1 – TCP Client;
		• 2 – UDP Server;
		• 3 – UDP Client
SendBuff	4096	Размер буфера хранения перед отправкой. Диапазон
		допустимых значений – от 0 до 4294967295
TCP_NoDelay	4	Отключение алгоритма Нагля для обеспечения передачи
		данных без ожидания заполнения пакета данными

Таблица 3.49 – Конфигурационные параметры CommSlot

На рисунке 3.57 представлен вид закладки *Редактор параметров* коммуникационного слота *CommSlot* с конфигурационными параметрами.

	CPU_INFO	👔 Lan	1 IP GommSlot 🗙	Ŧ
0	едактор парамет	ров Редакт	ор соединения 🛛 Состояние 🗍 🧈 Информация 🗎	
	🔨 Конфигураци	ионные Парам	иетры Модуля]
	Имя	Значение	Описание	
	Port	502		
	MaxConnections	4	Количество соединений	
	ModeTransport	TCP Server	Режим работы транспортного уровня: 0 - в качестве транспортного уровня использо	
	SendBuff	4096	Размер буфера хранения перед отправкой	
	TCP_NoDelay	4	Отключение алгоритма Harля (Nagle algorithm) для обеспечения передачи данных б ϵ	

Рисунок 3.57 – Конфигурационные параметры CommSlot. Закладка Pedakmop параметров

Для присвоения IP-коммуникационного слота программным модулям, через которые должен быть осуществлен доступ к сигналам контроллера, на закладке *Редактор соединения* (рисунок 3.58) в области настройки и просмотра параметров слота *CommSlot* выбрать в выпадающем списке *Server:* необходимый программный модуль.

Рисунок 3.58 – Конфигурационные параметры CommSlot. Закладка Pedakmop coeduнения

ВНИМАНИЕ! В данной версии сервисной программы реализована работа с модулем Modbus-Server TCP/IP – ModBusServer (Slave). Для присвоения IP-коммуникационного слота программному модулю Modbus-Server TCP/IP необходимо выполнить следующие действия:

1 На закладке *Редактор соединения* в выпадающем списке *Server:* выбрать значение – *Slave*.

2 На закладке *Редактор параметров* для модуля CommSlot задать номер порта – 502 и количество соединений – 4.

3 На закладке *Редактор параметров* для модуля **IP** заполнить IP-адрес, сетевую маску и адрес шлюза (см. 3.11.3).

3.12 Настройка адреса шлюза

Для системы исполнения контроллера необходимо задать адрес шлюза на закладке просмотра и настройки модуля **DefHost**. Для выполнения операции следует:

1 Открыть закладку просмотра и настройки модуля **DefHost**, выделив имя модуля в дереве устройств и дважды нажав левую кнопку "мыши".

2 Перейти на закладку Редактор параметров (рисунок 3.59).

3 Задать адрес шлюза для системы. Значение "по умолчанию" – 10.24.0.1.

едактор пар	аметров Состоян	ние 🧼 Информация	
• Системн	ные Параметры Мо	дуля	
Имя	Значение	Описание	
DefGateway	10.24.0.1	Адрес шлюза по-умолчанию для всей системы	

Рисунок 3.59 – Конфигурационные параметры DefHost. Закладка *Редактор параметров*

3.13 Настройка интерфейса RS-485

Для работы с сетью *RS-485* используется модуль **RS485** (в других модификациях контроллера возможно наличие нескольких физических интерфейсов RS-485 или RS-232). Настройка аппаратного интерфейса *RS-485* выполняется в системе *CoDeSys*, на закладке просмотра и настройки модуля **RS485**.

Для настройки аппаратного интерфейса необходимо:

1 Задать конфигурационные параметры модуля *RS485* (см. 3.13.1).

2 Выбрать устройство для работы через данное соединение (см. 3.13.2).

3.13.1 Настройка параметров модуля RS485

Для выполнения операции следует:

1 Открыть закладку просмотра и настройки модуля *RS485*, выделив имя интерфейса в дереве устройств и дважды нажав левую кнопку "мыши".

2 Перейти на закладку *Редактор параметров* (рисунок 3.60) и настроить соответствующие параметры модуля.

	🔐 R5485 🗙									
F	Редактор параметров Редактор соединения Состояние 🥵 Информация									
	 Конфигурационные Параметры Модуля 									
	Имя	Значение	Описание							
	BaudRate	19200								
	Paritet	None	Паритет							
	BitNmb	8 bits	Количество бит данных Количество стоповых бит							
	StopBitNmb	1 stop bit								
	Preamble	0	Время удержания передатчика в состоянии ВКЛЮЧЕНО перед выдачей данных, мкс							
	Postamble	0	Время удержания передатчика в состоянии ВКЛЮЧЕНО после выдачи данных, мкс							

Рисунок 3.60 – Модуль RS485. Закладка Редактор параметров

Конфигурационные параметры модуля **RS485** представлены в таблице 3.50.

Таблица	3.50 -	- Конфигу	рационные і	параметры	і модуля	RS485
,					· •	

Имя	Значение "по	Описание параметра		
параметра	умолчанию			
		• 500,		
		• 000;		
		• 1200;		
		• 2400;		
BaudRate	19200	• 4800;		
		• 9600;		
		• 19200;		
		• 28800;		
		• 38400;		
		• 57600;		
		• 115200		
	None	Паритет:		
Dunitat		• None;		
Partiel		• Odd;		
		• Even		
		Количество бит данных:		
		• 5 bits;		
BitNmb	8 bits	• 6 bits;		
		• 7 bits;		
		• 8 bits		
		Количество стоповых бит данных:		
StopBitNmb	1 stop bit	• 1 stop bis;		
	1	• 2 stops bis		
D	0	Время удержания передатчика в состоянии "Включено"		
rreamble	U	перед выдачей данных, мкс		
Dostamb1.	Δ	Время удержания передатчика в состоянии "Включено"		
rosiambie	0	после выдачи данных, мкс		

3.13.2 Связывание интерфейса RS-485 с программным модулем

Для связывания коммуникационного слота с программным модулем, через который должен осуществляться доступ к сигналам контроллера, на закладке *Редактор соединения* в выпадающем списке *Server:* выбрать необходимый программный модуль (например, **MBMRTU, MBRTUS, ElMicronMst** или т.п.) (см. рисунок 3.61).

MBMRTU R5485 X	-
Редактор параметров (Редактор соединения) Состояние 🥠 Информация	
Server: MBMRTU	
None	

а) Закладка *Редактор соединения* для программного модуля **MBMRTU**

MBRTUS R5485 X						
Редактор параметров	Редактор соединения)	Состояние	🧼 Информация			
Server: MBRTUS						
None						
MBRTUS	B					

б) Закладка *Редактор соединения* для программного модуля MBRTUS

Рисунок 3.61 – Конфигурационные параметры RS485. Закладка Редактор соединения

3.14 Периферийные устройства

В данном подразделе представлено описание периферийных устройств. Доступные периферийные устройства отражаются в дереве устройств в ветке *Peripheral*.

На рисунке 3.62 представлен вид закладки *Соотнесение входов/выходов* периферийных устройств.

_									
	CPU_INFO G Lan1 G IP G CommSlot G Peripheral X								
Γ	🗯 ElsyMA.CPUPeriph Соотнесение входов/выходов Состояние 🄅 Информация								
	Каналы								
Переменная Соотнесение Канал Адрес Тип Описание						Описание			
B- Carlos Switches									
	🚽 Application.PLC_PRG.myDipSwitch 🍫 DipSwitch 😽 ВҮТЕ Состояние DipSwitch (первые 4 бита)								
	L 🌪		SDOn	%IB	BYTE	Признак наличия SD карты в слоте (0 - не установлена; 1 - установлена)			

Рисунок 3.62 – Периферийные устройства. Закладка Соотнесение входов/выходов

Модуль поддерживает набор сигналов для отображения состояния переключателей контроллера и сигнал наличия установленной SD-карты в слот (таблица 3.51).

Имя	Тип	Описание							
	Switch	ies – состояние переключателей контроллера							
DipSwitch	BYTE	Отображает состояние переключателя <i>DipSwitch</i> (первые 4 бита переключателя SA300). Положение " ON " переключателя соответствует установленному биту. Соответствие бит и номера переключателя: • <i>бит 0</i> – не используется; • <i>бит 1</i> – соответствует переключателю DIP2; • <i>бит 2</i> – соответствует переключателю DIP3; • <i>бит 3</i> – соответствует переключателю DIP4							
SDOn	BYTE	Отображает наличие SD-карты в слоте: • 1 – карта не установлена:							
		• 2 – карта установлена							

3.15 Работа с SD-картой

SD-карта памяти предназначена для записи отладочной информации в процессе работы контроллера. Для работы с контроллером существует возможность использовать карты памяти *MicroSD* с объемом от 2 до 32 Гбайт.

Для работы с картой необходимо выполнить следующие действия:

1 Выполнить форматирование SD-карты. Форматирование SD-карты выполняется в файловую систему FAT.

2 Создать папку "elesylog" в корневой папке устройства.

3 Установить SD-карту. Для этого необходимо отключить питание контроллера и установить SD-карту в слот контроллера так, чтобы раздался характерный щелчок.

ВНИМАНИЕ! Перед извлечением SD-карты из слота контроллера, предварительно необходимо отключить питание контроллера. В ходе работы контроллера запрещается извлекать SD-карту ввиду потери данных незавершенных операций обмена.

Информация записывается в директорию elesylog программой *CoDeSys* автоматически в зависимости от информационных сообщений.

3.16 Работа с сигналами ввода/вывода контроллера

В данном подразделе представлено описание функциональных сигналов ввода/вывода контроллера. Основные функциональные сигналы ввода/вывода расположены в узле *СРU_IO* (сигналы ввода-вывода контроллера). Все сигналы ввода/вывода разделены на четыре группы:

- Сигналы дискретного ввода;
- Сигналы дискретного вывода;
- Сигналы аналогового ввода;
- Сигналы аналогового вывода.

Настройка параметров работы и служебная информация располагаются на закладке "Редактор параметров" коннектора *CPU_IO*. Для выполнения операции следует:

1 Открыть закладку просмотра и настройки модуля **ELSYMA_M01_XXX**, выделив коннектор **CPU_IO** в дереве устройств и дважды нажав левую кнопку "мыши".

2 Перейти на закладку Редактор параметров (рисунок 3.63).

- 3 Настроить соответствующие параметры модуля.
- 4 На вкладке *Редактор параметров* расположены две области:
- информация модуля;
- конфигурационные параметры модуля.

Область "**Информация Модуля**" служит для представления служебной информации работы контроллера.

Руководство по эксплуатации

TelsymaTest1_v0003.project - CODESYS								
Файл Правка Вид Проект Компиляция Онлайн Отладка Инструменты Окно Справка								
🎦 😅 🖬 🕌 🗠 🗠 🔏 🗎 🏝 🗶 🖊	19 ☞ 🗑 ● ∽ ~ ※ 凾 砲 × 桷 線 圖 油 + 19 幽 🧐 ଔ → 📲 💘 眞 殖 植 谷 ◆ ☴							
Elsyma Test 1_v0003	Редактор парам	етров 🚘	ElsyMA.CPU_IO Соотнесение входов/выходов Состояние 🚯 Информация					
	🛆 Информац							
Application	Имя	Значение	Описание					
— 10 Менеджер библиотек — 10 PLC PRG (PRG)	RealSoft	aiou	Имя ПО, субмодуля авода/вывода					
🖻 🧱 Конфигурация задач	SoftVer	0.0.0.6	Версия ПО субмодуля ввода/вывода					
MainTask	RealDate	02.02.16	Дата создания ПО субмодуля ввода/вывода					
Elsyma_BN (Elsyma_BN)	cfrxcnt	15794603	Количество принятых пакетов					
ELSYMA_M01_GSM (ELSYMA_	cftxcnt	337307	Количество переданных пакетов					
CPU_INFO (CPU_INFO)	cfrxerr	51551	Счетчик ошибок по приему (контроль CRC)					
BIGHIGGIGS (SOUTHOALE	cftxerr	cftxerr 0 Счетчик ошибок по передаче						
Slave (Slave)	cfberr	0	Битовые ошибки драйвера					
MBMRTUServer (cfcntoverin	0	Счетчик перетирания данных на ЦАП (со стороны ЦП)					
	cfcntoverout	0	Счетчик перетирания данных из АЦП (со стороны ЦП)					
CommSlot (Comm	auxrxcnt	185018	Количество принятых пакетов					
DefHost (DefHost)	auxtxcnt	140646	Количество переданных пакетов					
	auxrxerr	3423	Счетчик ошибок по приему (контроль CRC)					
SimpleGSM (SimpleGSM)	auxtxerr	0	Счетчик ошибок по передаче					
ExtBlocks	auxberr	0	Битовые ошибки драйвера					
	auxcntoverin	0	Счетчик перетирания данных на ЦАП (со стороны ЦП)					
	auxcntoverout	0	Счетчик перетирания данных из АЦП (со стороны ЦП)					
	🗙 Конфирура	ационные Па	раметры Молуля					
	- Kongan ypi		para parto da tradition					
🚁 Устроиства I РОО	Осообщений	1						
Последняя компиляция: О О Предкомпил.: Лани Текуший пользователь: (иисто)								

Рисунок 3.63 – Контроллер Элсима. Настройка каналов ввода-вывода

Информационные параметры модуля **ELSYMA_M01_XXX-CPU_IO** перечислены в таблице 3.52. Данные параметры не доступны для редактирования пользователем.

Таблица 3.52 – Модуль СРИ_Ю. Информация модуля

Имя	Значение "по	Описание				
	умолчанию''					
RealSoft	'no data'	Имя ПО субмодуля ввода/вывода				
SoftVer	'no data'	Версия ПО субмодуля ввода/вывода				
RealDate	'no data'	Дата создания ПО субмодуля ввода/вывода				
Статистика раб	оты драйвера п	оддержки сопроцессора ввода/вывода со стороны ЦП				
cfrxcnt		Количество принятых пакетов				
cftxcnt		Количество переданных пакетов				
cfrxerr		Счетчик ошибок по приему (контроль CRC)				
cftxerr		Счетчик ошибок по передаче				
cfberr		Битовые ошибки драйвера				
cfcntoverin		Счетчик перетирания данных на ЦАП (со стороны ЦП)				
cfcntoverout		Счетчик перетирания данных из АЦП (со стороны ЦП)				
Статистика раб	оты драйвера п	оддержки сопроцессора ввода/вывода со стороны сопроцессора				
aurxcnt		Количество принятых пакетов				
autxcnt		Количество переданных пакетов				
aurxerr		Счетчик ошибок по приему (контроль CRC)				
autxerr		Счетчик ошибок по передаче				
auberr		Битовые ошибки драйвера				
aucntoverin		Счетчик перетирания данных на ЦАП (со стороны ЦП)				
aucntoverout		Счетчик перетирания данных из АЦП (со стороны ЦП)				

Область "Конфигурационные Параметры Модуля" служит для задания параметров работы сопроцессора ввода/вывода. Данные параметры доступны для редактирования пользователем. Редактирование параметров доступно только в off-line режиме. Для изменения параметров работы необходимо отключиться от контроллера, изменить параметры и загрузить новый проект. Описание конфигурационных параметров представлено в 3.16.3.

3.16.1 Сигналы дискретного ввода

Для работы с сигналами дискретного ввода параметры не задаются. На рисунке 3.64 представлен вид закладки *ElsyMA.CPU_IO Coomhecenue входов/выходов*. Сигналы дискретного ввода сгруппированы в папке "Digital inputs".

едактор параметров 🗧 🗮 ElsyMA.CPU_IO Соотн	несение входов)	выходов	Состояние 🔍	Информа	ция		
аналы							
Переменная Соотнесение Канал Адрес Тип Описание							
- 🛅 Outputs							
🏨 📴 Analog Outputs							
😟 📴 Digital Outputs							
- 📴 Inputs							
🖲 📴 Analog Inputs							
🖻 🗀 Digital inputs 🌖							
j		DigInDiag	%IB697	BYTE	Диагностика работы измерительных каналов		
Application.PLC_PRG.myDigIn[1]] ~»	DigIn1_1	%.IX698.0	BIT	Состояние канала 1 дискретного ввода 1-й группы (разъем DIN1)		
Application.PLC_PRG.myDigIn[2]	~`∳	DigIn1_2	%JX698.1	BIT	Состояние канала 2 дискретного ввода 1-й группы (разъем DIN1)		
Application.PLC_PRG.myDigIn[3]	~⊘	DigIn1_3	%IX698.2	BIT	Состояние канала 3 дискретного ввода 1-й группы (разъем DIN1)		
Application.PLC_PRG.myDigIn[4]	~`₽	DigIn1_4	%IX698.3	BIT	Состояние канала 4 дискретного ввода 1-й группы (разъем DIN1)		
Application.PLC_PRG.myDigIn[5]	~>	DigIn1_5	%IX698.4	BIT	Состояние канала 5 дискретного ввода 1-й группы (разъем DIN1)		
Application.PLC_PRG.myDigIn[6]	~⊘	DigIn1_6	%.IX698.5	BIT	Состояние канала 6 дискретного ввода 1-й группы (разъем DIN1)		
Application.PLC_PRG.myDigIn[7]	~`∳	DigIn1_7	%.IX698.6	BIT	Состояние канала 7 дискретного ввода 1-й группы (разъем DIN1)		
- 🐄 Application.PLC_PRG.myDigIn[8]	~⊘	DigIn1_8	%IX698.7	BIT	Состояние канала 8 дискретного ввода 1-й группы (разъем DIN1)		
- 🐄 Application.PLC_PRG.myDigIn[9]	~`₽	DigIn1_9	%IX699.0	BIT	Состояние канала 9 дискретного ввода 1-й группы (разъем DIN1)		
Application.PLC_PRG.myDigIn[10]	~>	DigIn1_10	%IX699.1	BIT	Состояние канала 10 дискретного ввода 1-й группы (разъем DIN1)		
Application.PLC_PRG.myDigIn[11]	~⊘	DigIn2_1	%.IX699.2	BIT	Состояние канала 1 дискретного ввода 2-й группы (разъем DIN2)		
Application.PLC_PRG.myDigIn[12]	~⊘	DigIn2_2	%.IX699.3	BIT	Состояние канала 2 дискретного ввода 2-й группы (разъем DIN2)		
- 🏷 Application.PLC_PRG.myDigIn[13]	~`∳	DigIn2_3	%IX699.4	BIT	Состояние канала 3 дискретного ввода 2-й группы (разъем DIN2)		
Application.PLC_PRG.myDigIn[14]	~`₽	DigIn2_4	%IX699.5	BIT	Состояние канала 4 дискретного ввода 2-й группы (разъем DIN2)		
- 🏷 Application.PLC_PRG.myDigIn[15]	~`∳	DigIn2_5	%IX699.6	BIT	Состояние канала 5 дискретного ввода 2-й группы (разъем DIN2)		
Application.PLC_PRG.myDigIn[16]	~`∳	DigIn2_6	%IX699.7	BIT	Состояние канала 6 дискретного ввода 2-й группы (разъем DIN2)		
Application.PLC_PRG.myDigIn[17]	~`∳	DigIn2_7	%IX700.0	BIT	Состояние канала 7 дискретного ввода 2-й группы (разъем DIN2)		
🏷 Application.PLC_PRG.myDigIn[18]	~~	DigIn2_8	%IX700.1	BIT	Состояние канала 8 дискретного ввода 2-й группы (разъем DIN2)		
- 🏷 Application.PLC_PRG.myDigIn[19]	~~	DigIn2_9	%IX700.2	BIT	Состояние канала 9 дискретного ввода 2-й группы (разъем DIN2)		
	~⊘	DigIn2_10	%IX700.3	BIT	Состояние канала 10 дискретного ввода 2-й группы (разъем DIN2)		

Рисунок 3.64 – Сигналы дискретного ввода. Закладка *ElsyMA.CPU_IO Coomhecenue входов/выходов*

Описание сигналов дискретного ввода и соответствие с физическим входом представлено в таблице 3.53. Схема подключения сигналов приведена на рисунке А.1 приложения А. Технические характеристики дискретных входов приведены в таблице 1.1.

Имя	Тип	Подключение		Описание
		Разъем	Вход	
DigInDiag	BYTE	-	-	Диагностика работы измерительных каналов. В данной
0 0				версии ПО всегда равно "0"
DigIn1_1	Bit	DIN1	1	Состояние канала 1 дискретного ввода разъема DIN1
DigIn1_2	Bit	DIN1	2	Состояние канала 2 дискретного ввода разъема DIN1
DigIn1_3	Bit	DIN1	3	Состояние канала 3 дискретного ввода разъема DIN1
DigIn1_4	Bit	DIN1	4	Состояние канала 4 дискретного ввода разъема DIN1
DigIn1_5	Bit	DIN1	5	Состояние канала 5 дискретного ввода разъема DIN1
DigIn1_6	Bit	DIN1	6	Состояние канала 6 дискретного ввода разъема DIN1
DigIn1_7	Bit	DIN1	7	Состояние канала 7 дискретного ввода разъема DIN1
DigIn1_8	Bit	DIN1	8	Состояние канала 8 дискретного ввода разъема DIN1
DigIn1_9	Bit	DIN1	9	Состояние канала 9 дискретного ввода разъема DIN1
DigIn1_10	Bit	DIN1	10	Состояние канала 10 дискретного ввода разъема DIN1
DigIn2_1	Bit	DIN2	1	Состояние канала 1 дискретного ввода разъема DIN2
DigIn2_2	Bit	DIN2	2	Состояние канала 2 дискретного ввода разъема DIN2
DigIn2_3	Bit	DIN2	3	Состояние канала 3 дискретного ввода разъема DIN2
DigIn2_4	Bit	DIN2	4	Состояние канала 4 дискретного ввода разъема DIN2
DigIn2_5	Bit	DIN2	5	Состояние канала 5 дискретного ввода разъема DIN2
DigIn2_6	Bit	DIN2	6	Состояние канала 6 дискретного ввода разъема DIN2
DigIn2_7	Bit	DIN2	7	Состояние канала 7 дискретного ввода разъема DIN2
DigIn2_8	Bit	DIN2	8	Состояние канала 8 дискретного ввода разъема DIN2
 DigIn2_9	Bit	DIN2	9	Состояние канала 9 дискретного ввода разъема DIN2
DigIn2 10	Bit	DIN2	10	Состояние канала 10 дискретного ввода разъема DIN2

Таблица 3.53 – Модуль CPU_IO. Сигналы дискретного ввода

ВАЖНО! В соответствии со схемой подключения, приведенной на рисунке А.1, значение сигнала, равное **TRUE** (1), соответствует замкнутому ключу **Кх.х**. Значение сигнала, равное **FALSE** (0), соответствует разомкнутому ключу **Кх.х**.

ВАЖНО! Обновление сигналов дискретного ввода производится в каждом цикле задачи на стадии обновления входных данных. Обновление одного дискретного входа занимает примерно 17 мкс, соответственно, при обновлении всех данных цикл задачи увеличится на 340 мкс.

На рисунке 3.65 приведен пример кода для описания переменных дискретного ввода.

CPU_IO PLC_PRG X		
16	SetAllTU : INT := 2;	(* Установка всех DigOut в состояние ON *)
17		
18	(* Дискретный ввод *)	
19	DigInMax : INT := 20:	(* Количество сигналов Дискретного ввода *)
20	myDigIn : ARRAY[120] OF BOOL;	(* сигналы Дискретного ввода *)
21		
22	(* Дискретный вывод *)	
23	DigOutMax : INT := 8;	(* Количество сигналов Дискретного вывода *)
24	<pre>myDigOut : ARRAY[18] OF BOOL;</pre>	(* сигналы Дискретного вывода *)
25		
	· · · · · · · · · · · · · · · · · · ·	

Сигналы могут быть описаны в виде массива переменных или в виде отдельных переменных. Тип переменных должен быть *BOOL*.
3.16.2 Сигналы дискретного вывода

Для работы с сигналами дискретного вывода параметры не задаются. На рисунке 3.66 представлен вид закладки *ElsyMA.CPU_IO Coomhecenue входов/выходов*. Сигналы дискретного вывода сгруппированы в папке "Digital Outputs".

едактор параметров 🛛 🗮 ElsyMA.CPU_IO Соотне	сение входов/вы	аходов Сос	тояние 🌗 И	нформаци	19
Саналы					
Переменная	Соотнесение	Канал	Адрес	Тип	Описание
🖣 📴 Outputs					
🖲 🧀 Analog Outputs					
🖻 📴 Digital Outputs					
Application.PLC_PRG.myDigOut[1]) ~ ~	DigOut1	%QX48.0	BIT	Управление каналом 1 дискретного вывода типа Открытый коллект
Application.PLC_PRG.myDigOut[2]	~	DigOut2	%QX48.1	BIT	Управление каналом 2 дискретного вывода типа Открытый коллект
Application.PLC_PRG.myDigOut[3]	~	DigOut3	%QX48.2	BIT	Управление каналом 3 дискретного вывода типа Открытый коллект
Application.PLC_PRG.myDigOut[4]		DigOut4	%QX48.3	BIT	Управление каналом 4 дискретного вывода типа Открытый коллект
Application.PLC_PRG.myDigOut[5]		RelayOut1	%QX48.4	BIT	Управление каналом 1 дискретного вывода типа Реле
Application.PLC_PRG.myDigOut[6]		RelayOut2	%QX48.5	BIT	Управление каналом 2 дискретного вывода типа Реле
Application.PLC_PRG.myDigOut[7]	~~	RelayOut3	%QX48.6	BIT	Управление каналом 3 дискретного вывода типа Реле
Mapplication.PLC_PRG.myDigOut[8]	~~	RelayOut4	%QX18.7	BIT	Управление каналом 4 дискретного вывода типа Реле
		DigOutDi	%IB751	BYTE	Диагностика работы каналов управления
- 🔄 Inputs					
🖲 - 🚞 Analog Inputs					
🖮 📴 Digital inputs					

Рисунок 3.66 – Сигналы дискретного вывода. Закладка *ElsyMA.CPU_IO Coomhecenue входов/выходов*

Описание сигналов дискретного вывода и соответствие с физическим выходом представлено в таблице 3.54. Схема подключения сигналов приведена на рисунке А.2. Технические характеристики дискретных выходов приведены в таблице 3.54.

Имя	Тип	Подклю	очение	Описание	
		Разъем	Выход		
DigOut 1			1	Управление каналом 1 дискретного вывода типа	
DigOui_1	DIL	DOUT	1	"Открытый коллектор"	
DigOut 1	D;+	DOUT	2	Управление каналом 2 дискретного вывода типа	
DigOui_1	DIL	DOUT	2	"Открытый коллектор"	
		2	Управление каналом 3 дискретного вывода типа		
DigOui_1 Bit		DOUT	5	"Открытый коллектор"	
		DOUT	4	Управление каналом 4 дискретного вывода типа	
DigOui_4	DIL	DOUT	4	"Открытый коллектор"	
RelayOut1	Bit	RELAY	1	Управление каналом 1 дискретного вывода типа "Реле"	
RelayOut1	Bit	RELAY	2	Управление каналом 2 дискретного вывода типа "Реле"	
RelayOut1	Bit	RELAY	4	Управление каналом 3 дискретного вывода типа "Реле"	
RelayOut1	Bit	RELAY	5	Управление каналом 4 дискретного вывода типа "Реле"	
DisOutDiag	DVTE			Диагностика работы каналов управления. В данной	
DigOutDiag BYTE		-	-	версии ПО всегда равно "0"	

Таблица 3.54 – Модуль СРU_IO. Сигналы дискретного вывода

ВАЖНО! В соответствии со схемой подключения, приведенной на рисунке А.2, значение сигнала, равное **TRUE** (1), соответствует включенной нагрузке (выходной ключ открыт или контакты релейного выхода замкнуты). Значение сигнала, равное **FALSE** (0), соответствует выключенной нагрузке (выходной ключ закрыт или контакты релейного выхода разомкнуты).

ВАЖНО! Обновление сигналов дискретного ввода производится в каждом цикле задачи на стадии обновления выходных данных. Обновление одного дискретного выхода занимает примерно 25 мкс, соответственно, при обновлении всех данных цикл задачи увеличится на 200 мкс.

ВАЖНО! При включении питания или срабатывании **Watch-dog** таймера все выходы аппаратно переводятся в состояние "Выключено" (FALSE).

На рисунке 3.67 приведен пример кода для описания переменных дискретного вывода.

CPU_IO	PLC_PRG X	
19	DigInMax : INT := 20;	(* Количество сигналов Дискретного ввода *)
20	<pre>myDigIn : ARRAY[120] OF BOOL;</pre>	(* сигналы Дискретного ввода *)
21		
22	(* Дискретный вывод *)	
23	DigOutMax : INT := 8;	(* Количество сигналов Дискретного вывода *)
24	myDigOut : ARRAY[18] OF BOOL;	(* сигналы Дискретного вывода *)
25		
26	(* Аналоговый ввод *)	
27	AnalInMax : INT := 4;	(* Копичество сигналов Аналогового ввода *)
28	<pre>myAnalIn : ARRAY[14] OF REAL;</pre>	(* сигналы Аналогового ввода *)
29	<pre>myAInDiag : ARRAY[14] OF BYTE;</pre>	(* диагностика каналов Аналогового ввода *)
D		MANTHATA DI IDALA INNINA ANHAANNA HADAANNA HADAANNA IV

Рисунок 3.67 – Сигналы дискретного вывода. Пример описания переменных

Сигналы могут быть описаны в виде массива переменных или в виде отдельных переменных. Тип переменных должен быть *BOOL*.

3.16.3 Сигналы аналогового ввода

В контроллере сигналы аналогового ввода могут работать в следующих режимах:

- измерение значения напряжения;
- измерение значения тока;
- измерение значения температуры с датчика типа "Термопара";
- измерение значения температуры с датчика типа "Термосопротивление".

Выбор режима работы каждого канала и необходимые параметры задаются на вкладке *Редактор параметров*. На рисунке 3.68 представлен внешний вид вкладки и выделены параметры, отвечающие за обработку сигналов аналогового ввода.

ElsymaTest1_v0003.project* - CODESYS			
Файл Правка Вид Проект Компиляция Онлайн Отладка Инструме	нты Окно Спр	равка	
19 ☞ 및 ● ∽ ~ % ☜ ☜ × ♣ % 唱 쿄 • ♂ 幽	© ≪ → ■	≪ (≣ € <u>≡</u> (≛≣ *≣ & ⇔ ☴'
Verpolicites 0 Ebyma Test /_ v0003 Periode (ELSYMA) Periode (ELSYMA, MOI_ GSM (ELSYMA_MOI_GSM) Periode (ELSYMA_MOI_GSM (ELSYMA_MOI_GSM) Periode (ELSYMA_MOI_GSM (ELSYMA_MOI_GSM) Periode (ELSYMA_MOI_GSM (ELSYMA_MOI_GSM) Periode (Elsyma (MBMRTU) Periode (Elsyma (MBMRTU) Periode (Elsyma (MBMRTU) Periode (Elsyma (MBMRTU) Periode (CommSlot (CommSlot) Periode (Periode (Cepliod) Periode (Cepliod) Periode (Cepliod) Periode (Cepliod) Periode (Cepliod) Periode (Cep	СРU_10 Редактор парам Конфигура Имя МоdeFrec InpType1 Coefficient1 InpType2 Coefficient2 InpType3 Coefficient3 InpType4 Coefficient4 OutpType1 OutpType2	× PLC_PR(втров)	5 4A,CPU_IO Соотнесение входов/выходов Состояние
🗶 Устройства 🗋 РОИ			
Е. сооощения - всего з ошиоок, о предупреждении, о сооощении	Последня	а компиляция: 🧯) 0 🕐 О Предкомпил.: 🧿 Текущий пользователь: (никто)

Рисунок 3.68 – Параметры аналогового входа. Закладка Редактор параметров

ВАЖНО! При выборе определенного режима работы аналогового входа необходимо учитывать схему подключения для выбранного режима. Схемы подключения для различных режимов приведены на рисунках А.3, А.4, А.5 и А.6.

Параметры для работы с каналами аналогового ввода модуля **ELSYMA_M01_XXX-CPU_IO** перечислены в таблицах 3.55 и 3.56. Параметры доступны для редактирования пользователем только в режиме off-line.

Габлица 3.55 – Модуль СРU	_10. Параметры модуля	(аналоговый ввод)
---------------------------	-----------------------	-------------------

Има	Значение "по	Описаниа
КИНЯ	умолчанию''	Описание
ModeFrec	Disable	Режим интегрирования входных сигналов (Enable/Disable). При
		включенном режиме время измерения каждого сигнала составляет
		150 мс, а при выключенном – 25 мс. Общее время измерения всех
		каналов можно вычислить, умножив время измерения одного
		канала на количество активированных каналов (значение типа
		входа не равно "Disable")
InpType1	Voltage	Тип аналогового входа 1. Задается в соответствии с таблицей 3.56
Coefficient1	0,008	Коэффициент интегрирования канала 1 (0,0001 < Coefficient <= 1,0)
InpType2	Voltage	Тип аналогового входа 2. Задается в соответствии с таблицей 3.56
Coefficient2	0,008	Коэффициент интегрирования канала 2 (0,0001 < Coefficient <= 1,0)
InpType3	Voltage	Тип аналогового входа 3. Задается в соответствии с таблицей 3.56
Coefficient3	0,008	Коэффициент интегрирования канала 3 (0,0001 < Coefficient <= 1,0)
InpType4	Voltage	Тип аналогового входа 4. Задается в соответствии с таблицей 3.56
Coefficient4	0,008	Коэффициент интегрирования канала 4 (0,0001 < Coefficient <= 1,0)

Таблица 3.56 – Модуль СРU_10. Тип аналогового ввода

Тип	Описание	Диапазон измерения, °С					
1 111							
Dissable	Канал не обрабатывается	_	_				
Current	Ток 0–20 мА	—	_				
Voltage	Напряжение 0–10 В	—	_				
TXAK	Термопары типа ТХА (K)	-250	900				
ТХАК_тк	Термопары типа ТХА (К) с компенсацией холодного спая	-250	900				
TXAL	Термопары типа ТХК (L)	0	800				
TXAL_тк	Термопары типа ТХК (L) с компенсацией холодного спая	0	800				
TXAE	Термопары типа ТХКн (Е)	-250	1000				
ТХАЕ_тк	Термопары типа ТХКн (Е) с компенсацией холодного спая	-250	1000				
ТПП10	Термопары типа ТПП10 (S)	0	1700				
ТПП10_тк	Термопары типа ТПП10 (S) с компенсацией холодного спая	0	1700				
ТНН	Термопары типа ТНН (N)	-250	1000				
ТНН_тк	Термопары типа ТНН (N) с компенсацией холодного спая	-250	1000				
ТПР	Термопары типа ТПР (В)	250	1800				
ТПР_тк	Термопары типа ТПР (В) с компенсацией холодного спая	250	1800				
ТЖК	Термопары типа ТЖК (J)	-200	600				
ТЖК_тк	Термопары типа ТЖК (J) с компенсацией холодного спая	-200	600				
TBP	Термопары типа ТВР (А-1)	0	2500				
ТВР_тк	Термопары типа ТВР (А-1) с компенсацией холодного спая	0	2500				
ТПП13	Термопары типа ТПП13 (R)	0	1600				
ТПП13_тк	Термопары типа ТПП13 (R) с компенсацией холодного спая	0	1600				
ТСМ 50М	Термосопротивления в режиме трехпроводного	50	150				
	подключения типа ТСМ 50М	-30	150				
ТСМ 100М	Термосопротивления в режиме трехпроводного	50	150				
	подключения типа ТСМ 100М	-30	150				
ТСМ 500М	Термосопротивления в режиме трехпроводного	50	150				
	подключения типа ТСМ 500М	-30	130				

Тип	Описа	ание		Диап измерен	азон 1ия, °С
				Мин.	Макс.
ТСП 50П	Термосопротивления в подключения типа ТСП 50П	режиме	трехпроводного	-50	500
ТСП 100П	Термосопротивления в подключения типа ТСП 100П	режиме	трехпроводного	-50	500
ТСП 500П	Термосопротивления в подключения типа ТСП 500П	режиме	трехпроводного	-50	500
ТСП 1000П	Термосопротивления в подключения типа ТСП 1000П	режиме	трехпроводного	-50	500
ТСП Pt50	Термосопротивления в подключения типа ТСП Pt50	режиме	трехпроводного	-50	500
ТСП Pt100	Термосопротивления в подключения типа ТСП Pt100	режиме	трехпроводного	-50	500
ТСН 100Н	Термосопротивления в подключения типа ТСН 100Н	режиме	трехпроводного	-50	150
ТСН 500Н	Термосопротивления в подключения типа ТСН 500Н	режиме	трехпроводного	-50	150
ТСН 1000Н	Термосопротивления в подключения типа ТСН 1000Н	режиме	трехпроводного	-50	150

Таблица 3.56 – Модуль СРИ_ІО. Тип аналогового ввода

На рисунке 3.69 представлен вид закладки *ElsyMA.CPU_IO Coomнесение входов/выходов*. Сигналы аналогового ввода сгруппированы в папке "Analog Intputs".

актор параметров 🗧 🇮 ElsyMA.CPU_IO Соотне	сение входов/вь	кодов Со	стояние 🔍 🕼	1нформаци	19
налы					
еременная	Соотнесение	Канал	Адрес	Тип	Описание
📴 Outputs					
🖲 🧰 Analog Outputs					
표 🚞 Digital Outputs					
🗉 🧰 Inputs					
🗇 🞑 Analog Inputs					
Application.PLC_PRG.myAnalIn[1]	~	AIn1	%ID179	REAL	Значение измерительного канала 1 (В, мА, градус Цельсия)
*		AIn1Diag	%IB720	BYTE	Диагностика работы измерительного канала 1
Application.PLC_PRG.myAnalIn[2]	? ø	AIn2	%ID181	REAL	Значение измерительного канала 2 (В, мА, градус Цельсия)
*		AIn2Diag	%IB728	BYTE	Диагностика работы измерительного канала 2
Application.PLC_PRG.myAnalIn[3]	? ø	AIn3	%ID183	REAL	Значение измерительного канала 3 (В, мА, градус Цельсия)
¥ø		AIn3Diag	%IB736	BYTE	Диагностика работы измерительного канала 3
Application.PLC_PRG.myAnalIn[4]	~	AIn4	%ID185	REAL	Значение измерительного канала 4 (В, мА, градус Цельсия)
L		AIn4Diag	%IB744	BYTE	Диагностика работы измерительного канала 4

Рисунок 3.69 – Сигналы аналогового ввода. Закладка ElsyMA.CPU_IO Coomhecenue входов/выходов

Описание сигналов аналогового ввода и соответствие с физическим входом представлено в таблице 3.57. Схемы подключения сигналов приведены на рисунках А.3, А.4, А.5 и А.6. Технические характеристики аналоговых входов приведены в таблице 1.1.

Una	Tun	Подключение		Описаниа	
КМИ	1 ИП	Разъем	Вход	Описание	
AIn1	Real	AIN1	14	Значение измерительного канала 1 (В, мА, °С)	
AIn1Diag	Byte	-	-	Диагностика работы измерительного канала 1	
AIn2	Real	AIN2	14	Значение измерительного канала 2 (В, мА, °С)	
AIn2Diag	Byte	-	-	Диагностика работы измерительного канала 2	
AIn3	Real	AIN3	14	Значение измерительного канала 3 (В, мА, °С)	
AIn4Diag	Byte	-	-	Диагностика работы измерительного канала 3	
AIn4	Real	AIN4	14	Значение измерительного канала 4 (В, мА, °С)	
AIn4Diag	Byte	-	-	Диагностика работы измерительного канала 4	

Таблица 3.57 – Модуль СРИ_ІО. Сигналы аналогового ввода

ВАЖНО! Единицы измерения входных сигналов зависят от установленного режима работы (В, мА, °С), при этом подключенные датчики и схема подключения должны соответствовать установленному режиму.

Таблица 3.58 – Модуль CPU_IO. Диагностика каналов аналогового ввода (AIn1Diag...AIn4Diag)

Бит	Значение	Описание
0	0	Канал обрабатывается
0	1	Канал не обрабатывается (задан параметр "Disable")
1	0	Измеренное значение находится в диапазоне измерения
1	1	Измеренное значение находится вне диапазона измерения
2	0	Нормальная работа АЦП
2	1	Ошибка работы с АЦП (ошибка SPI_ERR)
	0	Было обновление измеренного значения
7		Не было обновления измеренного значения. Возможно, не работает
,	1	суббмодуль аналогового ввода. Бит сбрасывается в нулевое значение при
		первом корректном приеме данных от суббмодуля

На рисунке 3.70 приведен пример кода для описания переменных аналогового ввода.

Рисунок 3.70 - Сигналы аналогового ввода. Пример описания переменных

Сигналы могут быть описаны в виде массива переменных или в виде отдельных переменных. Тип переменных должен быть *REAL* для значений сигналов и *Byte* для сигналов диагностики.

3.16.4 Сигналы аналогового вывода

В контроллере сигналы аналогового вывода могут работать в следующих режимах:

- вывод напряжения;
- вывод тока.

Выбор режима работы каждого канала и необходимые параметры задаются на вкладке *Редактор параметров*. На рисунке 3.71 представлен внешний вид вкладки и выделены параметры, отвечающие за обработку сигналов аналогового вывода.

Руководство по эксплуатации

ElsymaTest1_v0003.project* - CODESY5											
Файл Правка Вид Проект Компиляция Онлайн Отладка Инструменты Окно Справка											
智 ☞ 🖶 ● ∽ ~ 🗼 ங 唸 × 桷 馀 臨 油 + 🗂 幽 ଔ ଔ → 📲 🛠 ほ 短 性 だ 왕 ㅎ ☴											
Устройства 🚽 🗸 🗸				-							
ElsymaTest1_v0003				Toguno I il Introprosura I							
Device (ELSYMA)	дактор парам	EISYMA.CPU_IO CO	оотнесение входов/выходов сос	тояние 🔹 информация							
	 Информаци 	ия Модуля									
Менеджер библиотек	A Koutumma										
PLC_PRG (PRG)	л конфигура Ама	Зизначие	Описание								
🖹 🎆 Конфигурация задач	MadaEras	- Snahla	Описание								
	Moderrec	Enable	нежим интегрирования								
Elsyma_BN (Elsyma_BN)	InpType1	Voltage	Тип аналогового входа 1								
E ModuleCP	Coefficient1	0.9	Коэффициент интегрирования	канала 1							
ELSYMA_M01_GSM (ELSYMA_M01_GSM)	InpType2	Voltage	Тип аналогового входа 2								
SoftModules (SoftModules)	Coefficient2	0.9	Коэффициент интегрирования	канала 2							
1 Lan1 (Lan1)	InpType3	Voltage	Тип аналогового входа 3								
DefHost (DefHost)	Coefficient3	0.9	Коэффициент интегрирования	канала 3							
	InpType4	Voltage	Тип аналогового входа 4								
SimpleGSM (SimpleGSM)	Coefficient4	0.9	Коэффициент интегрирования канала 4								
	OutpType1	Voltage	Тип аналогового выхода 1								
	OutpType2	Voltage	Тип аналогового выхода 2								
🛫 Устройства 🗋 POU											
Сообщения - всего 3 ошибок, 0 предупреждений, 0 сообщений											
		Последняя компиляция: 📀	0 🕐 О Предкомпил.: 😋	Текущий пользователь: (никто) 🥢							

ВАЖНО! При выборе определенного режима работы аналогового вывода необходимо учитывать схему подключения для выбранного режима. Схемы подключения для различных режимов приведены на рисунках А.7 и А.8.

Параметры для работы с каналами аналогового вывода модуля *ELSYMA_M01_XXX-CPU_IO* перечислены в таблице 3.59. Параметры доступны для редактирования пользователем только в режиме off-line.

Таблица 3.59 – Модуль СРU	_10. Параметры модуля	(Аналоговый вывод)
---------------------------	-----------------------	--------------------

Имя	Значение "по умолчанию"	Описание
OutType1	Voltage	Тип аналогового выхода 1. Доступное значение "Voltage" – формирование напряжения, " <i>Current</i> " – формирование тока
OutType2	Voltage	Тип аналогового выхода 2. Доступное значение "Voltage" – формирование напряжения, " <i>Current</i> " – формирование тока.

На рисунке 3.69 представлен вид закладки *ElsyMA.CPU_IO Coomнесение входов/выходов*. Синалы аналогового вывода сгрупированы в папке "Analog Outputs".

🕤 CPU_IO 🗙 📄 PLC_PRG					
Редактор параметров 🛛 🗮 ElsyMA.CPU_IO Соотнес	ение входов/вь	ходов Со	тояние 🔍 🌡	Информаци	я
Каналы					
Переменная	Соотнесение	Канал	Адрес	Тип	Описание
📮 📴 Outputs					
🗧 🚞 Analog Outputs					
Application.PLC_PRG.myAnalOut[1]	~	AOut1	%-QD10	REAL	Управление каналом 1 аналогового вывода
Application.PLC_PRG.myAnalOut[2]	~	AOut2	%QD11	REAL	Управление каналом 2 аналогового вывода
		AOut1Diag	%IB749	BYTE	Диагностика работы 1-го канала управления
1 1 I III 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		AOut2Diag	%IB750	BYTE	Диагностика работы 2-го канала управления
🖭 🔤 Digital Outputs					
🖻 - 📴 Inputs					
🗐 🛄 Analog Inputs					
🕮 📴 Digital inputs					

Рисунок 3.72 – Сигналы аналогового вывода. Закладка *ElsyMA.CPU_IO Coomhecenue входов/выходов* Описание сигналов аналогового вывода и соответствие с физическим выходом представлено в таблице 3.60. Схемы подключения сигналов приведены на рисунках А.7 и А.8. Технические характеристики аналоговых выходов приведены в таблице 3.60.

Имя	Тип	Подклн	очение	Описание
		Разъем	Выход	
AOut1	Real	AOUT	1	Управление каналом 1 аналогового вывода (В, мА)
AOut2	Real	AOUT	2	Управление каналом 2 аналогового вывода (В, мА)
AOut1Diag	Byte	-	-	Диагностика работы канала управления 1
AOut2Diag	Byte	-	-	Диагностика работы канала управления 2

Таблица 3.60 - Модуль СРИ_Ю. Сигналы аналогового вывода

ВАЖНО! Единицы измерения выходных сигналов зависят от установленного режима работы (В, мА), при этом подключенные датчики и схема подключения должны соответствовать установленному режиму.

Таблица 3.61 – Модуль СРU_IO. Диагностика каналов аналогового вывода (AOut1Diag...AOut2Diag)

Бит	Значение	Описание
0	0	Канал обрабатывается
	1	Канал не обрабатывается (задан параметр "Disable")
1	0	Заданное значение находится в диапазоне выхода
	1	Заданное значение находится вне диапазона формирования выхода
2	0	Нормальная работа ЦАП
	1	Ошибка работы с ЦАП (ошибка SPI_ERR)

На рисунке 3.73 приведен пример кода для описания переменных аналогового вывода.

	CPU_IO	
28	myAnalIn : ARRAY[14] OF REAL;	(* сигналы Аналогового ввода *)
29	<pre>myAInDiag : ARRAY[14] OF BYTE;</pre>	(* диагностика каналов Аналогового ввода *)
30		
31	(* Анапоговый вывод *)	
32	AnalOutMax : INT := 2;	(* Количество сигналов Аналогового вывода *)
33	myAnalOut : ARRAY[12] OF REAL;	(* сигнаты Аналогового вывода *)
34	myAOutDiag : ARRAY[12] OF BYTE;	(* диагностика каналов Аналогового вывода *)
35	myOutl : REAL;	
36	myOut2 : REAL;	

Рисунок 3.73 – Сигналы аналогового ввода. Пример описания переменных

Сигналы могут быть описаны в виде массива переменных или в виде отдельных переменных. Тип переменных должен быть **REAL** для значений сигналов и **Byte** для сигналов диагностики.

4 КОМПЛЕКТ ПОСТАВКИ

Комплект поставки контроллера приведен в таблице 4.1.

Таблица 4.1 – Контроллер Элсима. Комплект поставки

Наименование	Количество
1 Контроллер программируемый логический Элсима ТУ 4210-090-28829549-2016	1 шт.
2 Контроллер программируемый логический Элсима. Паспорт	1 экз.
3 Контроллер программируемый логический Элсима. Гарантийный талон	1 экз.
4 Электронный носитель, содержащий следующие документы и ПО:	1 шт.
4.1 Контроллер программируемый логический Элсима. Руководство по эксплуатации	
4.2 Дистрибутив системы программирования CoDeSys	
4.3 Пакет поддержки контроллера Элсима в системе CoDeSys EleSy ELSYMA TSP_vXX.XXXXX	
4.4 Копия сертификата соответствия	
5 Антенна ANT GSM/3G BY-3G-03-2 SMA-М (только для исполнения Элсима-M01-ZZZU-GSM)	1 шт.
6 Упаковка	1 компл.

5 ТРАНСПОРТИРОВАНИЕ И ОБСЛУЖИВАНИЕ

5.1 Тара и упаковка

Контроллер упакован в отдельную индивидуальную тару в соответствии с требованиями ГОСТ 23170-78.

Транспортная тара обеспечивает сохранность контроллера при выполнении погрузочно-разгрузочных работ, транспортировании в закрытых транспортных средствах, необходимую защиту от воздействия внешних факторов, а также при хранении у поставщика и потребителя в складских условиях в пределах гарантийного срока хранения.

При поставке в смонтированном виде в составе других устройств (щитов, стоек) способ упаковки контроллера определяется условиями поставки устройств (щитов, стоек).

5.2 Транспортирование и хранение

Транспортирование упакованных контроллеров может осуществляться всеми видами транспорта в закрытых транспортных средствах: крытых автомашинах, крытых вагонах, самолетом, водным транспортом при размещении в трюмах судов.

Не допускается транспортирование контроллеров в негерметизированных и не отапливаемых отсеках самолетов и морским транспортом без специальных упаковочных средств.

На контроллер в транспортной таре допускается воздействие следующих климатических и механических факторов:

- температура окружающего воздуха от минус 55 до плюс 70 °С;
- относительная влажность воздуха от 5 до 100 % без конденсации;
- синусоидальная вибрация по группе F3 ГОСТ Р 52931-2008;
- свободное падение с высоты согласно ГОСТ Р 52931-2008.

Упакованные контроллеры должны быть закреплены в транспортных средствах и защищены от атмосферных осадков и брызг воды.

Размещение и крепление в транспортном средстве должно обеспечить устойчивое положение контроллеров, исключать возможность ударов друг о друга, а также о стенки транспортного средства. Допускается транспортирование с использованием контейнеров.

При соблюдении условий механических воздействий, соответствующих рабочим, контроллер может транспортироваться в составе законченных систем управления (например, стоек или шкафов).

Условия хранения контроллера в упаковке предприятия-изготовителя у поставщика и потребителя должны соответствовать категории 2 (*C*) по ГОСТ 15150-69.

5.3 Калибровка

Порядок проведения калибровки приведен в документе "Контроллер программируемый логический Элсима. Методика калибровки". Результаты первичной и периодических калибровок заносятся в паспорт на контроллер.

5.4 Техническое обслуживание

С целью обеспечения постоянной исправности и готовности контроллера к эксплуатации необходимо не реже, чем один раз в год проводить техническое обслуживание.

Порядок технического обслуживания:

1 Отключить питание контроллера.

2 Отстыковать от контроллера все подключенные кабели.

З Промыть контакты разъемов составных частей контроллера этиловым ректифицированным техническим спиртом по ГОСТ Р 55878-2013. При промывке контакты разъемов должны находиться в вертикальном положении. Норма расхода спирта – 0,05 л на 100 контактов.

4 Просушить на воздухе не менее 30 минут.

5 Подключить кабели, подать питание на контроллер.

5.5 Текущий ремонт

Ремонт контроллера должен осуществляться предприятием-изготовителем или специализированным предприятием, имеющим соответствующее оборудование и подготовленный персонал.

Для передачи контроллера на гарантийный ремонт потребитель должен выслать по адресу предприятия-изготовителя отказавший контроллер в заводской упаковке, с паспортом и с указанием характера отказа и обстоятельств его возникновения.

По истечении гарантийного срока ремонт проводится за счет потребителя.

6 Решение проблем

В случае возникновения проблем при работе с контроллером, обратиться к документации. Если проблему не удается решить самостоятельно, необходимо обратиться к поставщику контроллера (см. контактную информацию на предпоследней странице настоящего руководства по эксплуатации).

Приложение А (справочное)

Схемы подключения сигналов контроллера

Рисунок А.1 – Подключение сигналов дискретного ввода

Рисунок А.2 – Подключение сигналов дискретного вывода

Рисунок А.3 – Подключение датчиков тока

Рисунок А.4 – Подключение датчиков напряжения

Рисунок А.5 – Подключение датчиков термопар

Контроллер программируемый логический Элсима

Рисунок А.6 – Подключение датчиков термосопротивлений

Рисунок А.7 – Подключение аналогового вывода в режиме напряжения

Рисунок А.8 – Подключение аналогового вывода в режиме тока

Приложение Б (справочное)

Изменение сетевых параметров контроллера

Изменение сетевых параметров контроллера реализовывается следующим образом:

1 Выключить питание контроллера.

2 Заблокировать работу WatchDog-таймера с помощью установки переключателя SW "1" в положение "ON".

З Перевести контроллер в режим старта с заданными заводскими настройками с помощью установки переключателя SW "3" в положение "ON".

4 Подать питание на контроллер и ожидать около *1* минуты включение непрерывного свечения индикатора "L1" зеленым цветом. При этом индикатор "L2" светится желтым цветом непрерывно (контроллер находится в режиме настройки сетевых параметров).

5 Подключиться к контроллеру по заводским сетевым параметрам (IP-адрес – "10.24.1.200", маска подсети – "255.255.254.0") с помощью программы *Telnet*. Далее приведен пример настройки **Windows** для работы с контроллером по адресу "10.24.1.180".

6 Запустить приложение *Telnet* с помощью команды системного меню Windows: Пуск → Программы → Выполнить....

Запуск пр	оограммы ? 🔀
	Введите имя программы, папки, документа или ресурса Интернета, и Windows откроет их.
<u>О</u> ткрыть:	telnet 10.24.1.200
	ОК Отмена Об <u>з</u> ор

Рисунок Б.1 – Подключение к контроллеру через Telnet

7 В поле *Открыть* ввести строку "telnet 10.24.1.200" и нажать кнопку "OK". В окне приложения *Telnet* появится приглашение для регистрации в OC.

8 В поле *login*: ввести команду "setip" и на запрос пароля в поле *Password*: ввести – "root" (см. пример Б.1).

9 Установить переключатель SW "3" в положение "OFF". После процедуры изменения сетевых настроек контроллер автоматически перезапускается.

10 В поле *ipaddress:* ввести необходимый IP-адрес - "10.24.1.180".

11 Подтвердить правильность введенного IP-адреса.

12 В поле networkmask: ввести необходимую сетевую маску - "255.255.254.0".

13 Подтвердить правильность введенной сетевой маски.

ВНИМАНИЕ! Замена IP-адреса выполняется только в том случае, если пользователь ввёл оба значения для полей *ipaddress:* и *networkmask:*.

Если пользователь не вводил новые значения для полей *ipaddress:* и *networkmask:*, то остается тот IP-адрес, который был задан до операции.

Контроллер программируемый логический Элсима

14 После подтверждения сетевой маски контроллер будет перезапущен (процесс загрузки можно наблюдать на индикаторе). Примерно через 2 минуты можно подключиться к контроллеру по новому адресу.

Пример Б.1.

📕 Telnet 10.24.1.200	×
$\begin{bmatrix} -1 & -1 & -1 \\ -1 & -1 & -1 \\ -1 & -1 &$	
nrayu rrujett nttp://arayu-prujett.ury 16/11-2-06r0En	
HFAGO 2013.12 IC/11-2-88F6EH	
IC711-2-8BF6EA login: setip Password: Stopping codesyscontrol app: codesyscontrolsh: you need to specify whom to kill ok Setting up service ip address [CmpBlkDrvUdp] itf.1.ipaddress=10.24.1.179 itf.1.name=main itf.1.networkmask=255.255.254.0	
Set up ip itf.1.ipaddress=10.24.1.180 itf.1.ipaddress=10.24.1.180 [Yn]y Set up netmask itf.1.networkmask=255.255.254.0 itf.1.networkmask=255.255.254.0 [Yn]y Starting codesyscontrol app: codesyscontrol	-

Приложение В (справочное)

Поддерживаемые типы данных

В таблице В.1 представлен список стандартных типов данных IEC 61131-3, поддерживаемых в контроллере Элсима.

Наименование	Описание
ELSYGSM	Функциональный блок для работы со встроенным модулем GSM
MapIn	Функциональный блок организации процесса приема данных программных модулей и модулей УВВ
MapOut	Функциональный блок организации процесса передачи данных программных модулей и модулей УВВ
ElsyMA_CE30X. CE30X	Функциональный блок для работы со счетчиком Энергомера CE301/302/303/304
ElsyMA_M23X. M23X	Функциональный блок для работы со счетчиком электроенергии Меркурий 230/233/234
chstat	Статистика работы канала
libstat	Статистика работы библиотеки канала
busstat	Структура основной диагностики работы интерфейса
busstat_ext	Структура расширенной диагностики работы интерфейса
SAI_t	Значение входа измерительного канала 1-8
DAGrOut_t	Группа выходных сигналов
GrSDI_t	Входные дискретные сигналы

Таблица В.1 – Типы данных

Приложение Г (справочное)

Установка драйвера Microsoft RNDIS

Конфигурирование и загрузка проектов в ПЛК средствами *CoDeSys* осуществляется с применением стека протоколов TCP/IP. При этом возможно два варианта подключения:

1 С применением сетевого интерфейса *Ethernet*, путем подключения разъема LAN1 (RJ45) ПЛК сетевым кабелем, через маршрутизатор/роутер или напрямую к ПК.

2 С применением интерфейса USB, путем подключения разъема "**mini-USB тип B**" ПЛК кабелем USB к ПК с использованием драйвера виртуальной сети RNDIS.

При подключении ПЛК к ПК через интерфейс *Ethernet* используется соответствующий сетевой адаптер, драйвер этого адаптера и стек протоколов TCP/IPv4, входящий в состав ОС.

Для подключения ПЛК через интерфейс USB необходимо применения драйвера удаленного сетевого интерфейса (**Remote Network Driver Interface**, **RNDIS**), который создаст виртуальный сетевой адаптер с возможностью работы сетевых соединений TCP/IP, как и при использовании *Ethernet*.

Драйвер **RNDIS** является разработкой компании **Microsoft** и входит в состав OC. OC **Windows** не всегда удаётся установить корректно драйвер **RNDIS** для устройств, требующих его работы, поэтому потребуется выполнение следующих шагов для установки и конфигурирования виртуальной сети:

1 Подключите ПЛК к ПК кабелем UDB 2.0 "USB A - mini-USB B" (рисунок Γ .1) длиной не более 1,8 м и включите питание ПЛК. После инициализации ПЛК и обнаружения нового USB устройства (около 30 с), ОС Windows будет выполнять поиск подходящего драйвера **RNDIS** и его установку в автоматическом режиме.

Рисунок Г.1 – Вид разъёмов на кабеле UDB 2.0 "USB A – mini-USB B"

2 Открыть "Диспетчер устройств" (выбором соответствующего пункта в меню "*Мой компьютер*" -> "*Свойства*" или после запуска в командной строке "*mmc compmgmt.msc*") и убедиться в корректной установке драйвера **RNDIS**.

Если установка драйвера завершена некорректно, то в списке "Другие устройства" будет находиться "*RNDIS/Ethernet Gadget*", отмеченное значком ошибки и предупреждением в окне состояния устройства "Для устройства не установлены драйверы. (Код 28), Для этого устройства отсутствуют совместимые драйверы" (рисунок Г.2).

Рисунок Г.2 – Вид "Диспетчер устройств"

Откройте свойства "*RNDIS/Ethernet Gadget*" и во вкладке "*Общие*" или "*Драйвер*" нажмите кнопку "**Обновить...**" (рисунок Г.3).

	Сво	йства: RN	IDIS/Ethernet Gadget
Общие Д	райвер	Сведения	События
il.	NDIS/E	hemet Gadg	jet
Г	Іоставщі	ик драйвера	а: Нет данных
L	l ата раз	работки:	Нет данных
В	ерсия д	райвера:	Нет данных
L	ифрова	я подпись:	Цифровая подпись отсутствует
<u>С</u> вед	ения	Прос	мотр сведений о файлах драйверов.
Обнов	вить	Обно	вление драйверов для этого устройства.
О <u>т</u> ка	атить	Если обно восс	устройство не работает после вления драйвера, откат танавливает прежний драйвер.
<u>О</u> ткл	ючить	Откл	ючение выбранного устройства.
<u>У</u> да	лить	Удал поль	ение драйвера (для опытных зователей).
			ОК Отмена

Рисунок Г.3 – Информация о драйвере "RNDIS/Ethernet Gadget"

3 В открывшемся окне обновления выбрать режим поиска "*Выполнить поиск драйвера* на этом компьютере" (рисунок Г.4).

•	<u>А</u> втоматический поиск обновленных драйверов Windows будет вести поиск последних версий драйверов для устройства на этом компьютере и в Интернете, если пользователь не отключил эту функцию в параметрах установки устройства.
÷	<u>В</u> ыполнить поиск драйверов на этом компьютере Поиск и установка драйверов вручную.

Рисунок Г.4 – Выбор режима поиска драйвера "RNDIS/Ethernet Gadget"

4 Отобразить список драйверов, нажав "Выбрать драйвер из списка уже установленных драйверов ..." в открывшемся окне (рисунок Г.5).

Поиск драйверов на этом компьк	отере	
Искать драйверы в следующем месте:		
C:\Program Files (x86)\	~	Об <u>з</u> ор
- on or one store and the name		
Выбрать драйвер из списка у в этом списке перечисляются все уст устройством, а также драйверы для ус	же установленных дј ановленные драйверы, сов стройств той же категории.	райверов местимые с этим

Рисунок Г.5 – Открытие спсика установленных драйверов

5 Выбрать из списка раздел "Сетевые адаптеры" (рисунок Г.6).

Риборито тип устройство из списко	
выберите тип устроиства из списка.	
Стандартные типы оборудования:	
📕 Сетевая служба	^
Сетевой протокол	
💽 Сетевые адаптеры	
🖳 Системные устройства	
💷 Смарт-карты	
🔮 Средство безопасности	
Щ Стримеры	
🔚 Теневое копирование томов запоминающих устройств	
👝 Тома запоминающих устройств	
🗣 Универсальные устройства удаленного рабочего стола	
🟺 Устройства 61883	
🕼 Устройства HID (Human Interface Devices)	

Рисунок Г.6 – Открытие списка драйверов для сетевых адаптеров

6 В разделе "*Сетевые адаптеры*" выбрать производителя устройств "*Microsoft*" в левом списке и для этого производителя "*Удалённое NDIS-совместимое устройство*" из правого списка уже установленных драйверов (рисунок Г.7). Нажать кнопку "**Далее**".

	10.000		
Щелкните по назваа оборудованию, зате этой возможности,	нию сет ем нажм нажми	reвого адаптера, наиболее соответствующего вашему мите кнопку "Далее". При наличии установочного диска дл те кнопку "Установить с диска".	я
Изготовитель	^	Сетевой адаптер:	,
Microsoft	_	🔄 Туннельный адаптер Microsoft Teredo	
Motorola, Inc. Movistar	~	Хдаленное NDIS-совместимое устройство Универсальный адаптер мобильной широкополосной Учеле Хетер Diverse (случие Хетер)	ί,
<	>		

Рисунок Г.7 – Выбор драйвера для "RNDIS/Ethernet Gadget"

7 Дождаться окончания обновления драйвера для устройства "*RNDIS/Ethernet Gadget*" и появления окна (рисунок Г.8). Нажать кнопку "Закрыть".

Рисунок Г.8 – Сообщение Выбор драйвера для "RNDIS/Ethernet Gadget"

8 После успешной установке драйвера необходимо проверить доступность устройства "*RNDIS/Ethernet Gadget*" с помощью "*Диспетчер устройствв*" (рисунок Г.9). Значок ошибки драйвера должен исчезнуть и устройство перемещается из списка нераспознанных устройств ("*Другие устройства*") в список "*Сетевые адаптеры*". Изменения в системе могут продолжаться несколько минут, поэтому для полного их завершения и перехода к использованию сети на основе драйвера *RNDI* рекомендуется сделать паузу 4–5 минут.

🚔 Диспетчер устройств 🗕 🕻	×
<u>Ф</u> айл <u>Д</u> ействие <u>В</u> ид <u>С</u> правка	
🗢 🔿 📰 📴 👔 🖬 💐 😭 🕀 👧	
Очереди печати	^
⊳ 🚏 Порты (СОМ и LPT)	
Процессоры	
🔺 💽 Сетевые адаптеры	
Realtek PCI GBE Family Controller	
👰 Realtek PCIe GBE Family Controller	
RNDIS/Ethernet Gadget	
р 🖳 Системные устройства	
Устройства HID (Human Interface Devices)	
Устройства обработки изображений	
	~

Рисунок Г.9 – Список доступных сетевых адаптеров с "RNDIS/Ethernet Gadget"

9 Созданный виртуальный адаптер *Ethernet* появится в списке сетевых подключений и будет использоваться для доступа к ПЛК (рисунок Г.10).

Рисунок Г.10 – Список сетевых подключений с добавленным адаптером RNDIS

10 При взаимодействии через виртуальные устройства *Ethernet* на базе драйвера *RNDIS*, оно автоматически получает от контроллера сетевые настройки (IP-адрес, маску подсети, адрес шлюза и т.д.). Адрес контроллера совпадает с адресом шлюза. Начальная конфигурация сети на основе драйвера *RNDIS* займёт не более *3* минут.

11 После выполнения указанных действий можно запустить конфигуратор *CoDeSys* для контроллера. Создать проект и выполнить поиск доступных устройств. Список доступных контроллеров, включая доступ через виртуальную сеть, показан на рисунке Г.11.

ommunication Settings	PLC settings	Applications	Log	Files	Status	0	Information			
Select the network p	ath to the cont	roller:								
Gateway-1:002E.B00	0.0A18								~	Set active path
Gateway-1	-D2A6A9[01C	8]						 Device Name: ELM01-D580A0	_	Add gateway
TC711	-2-19748A [01]	E8]						002E.B000.0A18		Add device
- 1C711	-2-1974DE [01 -2-1974F3 [018	EC] E7]						1028 0002		
- 🔐 TC711	-2-197962 [018	EE]						Target Name:		Scan network

Рисунок Г.11 – Список контроллеров, включая подключения через адаптер RNDIS

Контроллер программируемый логический Элсима

Приложение Д (справочное)

Описание применения функциональных блоков MapIn, MapOut

Д.1 Использование ФБ МарІп

Назначение ФБ **MapIn**: Проверить обновление ответа на запись holding a/ов или coil a/ов в **MBMRTU**.

Выхода ФБ:

error: BYTE; возвращает код ошибки ФБ

Возможные значения:

0-нет ошибок;

1 – переменная пользователя не связана с выходом программного модуля **мвмгти**.

Порядок работы с ФБ МарІп на примере языка ST:

Шаг 1. Инициализация экземпляра ФБ с передачей адресса выхода (Например, *out1* связана с выходом ModBusServer)

PROGRAM PLC_PRG VAR mapinanswcmd1 : Elesy.MapIn(ADR(inanswcmd1)); END_VAR

Шаг 2. Связать экземпляр ФБ с выходом

mapinanswcmd1(); (*При первом вхождении связывание экземпляра, при тысячи входов, выполняется за 300 микросекунд в худшем случае, при втором и более вхождении связывание не выполняется*)

Шаг 3. Проверить обновление ответа на запись holding a/oв или coil a/oв в мвмяти

mapinanswcmd1.lsUpdate(); (* Возвращает TRUE - обновление было, Возвращает FALSE - обновления не было *)

Д.2 Использование ФБ МарОut

Назначение ФБ **МарOut**: изменить поведение передачи данных выхода программного модуля (Например, **MBSTCP** и т.п.).

Входа ФБ:

control: BYTE; установка поведения передачи данных выхода программного модуля

Возможные значения:

0 – не передавать данные выхода (по умолчанию);

l – передать данные выхода один раз (после передачи значение *control* автоматически сбрасывается в "0");

2 – передавать данные выхода по изменению.

Выхода ФБ:

error: BYTE; возвращает код ошибки ФБ

Возможные значения:

0-нет ошибок;

1 – переменная пользователя не связана с выходом программного модуля.

Порядок работы с функциональным блоком МарOut на примере языка ST:

Шаг 1. Инициализация экземпляра ФБ с передачей адресса выхода (Например, *out1* связана с выходом ModBusServer)

PROGRAM PLC_PRG VAR mapout1 : Elesy.MapOut(ADR(out1)); END_VAR

Шаг 2. Связать экземпляр ФБ с выходом

```
mapout1(); (*При первом вхождении связывание экземпляра, при тысячи выходов, выполняется за 300 микросекунд в худшем случае, при втором и более вхождении связывание не выполняется *)
```

Шаг 3. Установить поведение для однократной передачи данных выхода

mapout1.control := 1;

Приложение E (справочное)

Пример применения функций ФБ СЕЗ0Х

Для использования функций библиотеки **CE30XLibrary** необходимо в программе пользователя для ПЛК **PLC_PRG** (**PRG**) (в ветке "*Plc Logic*" – "*Application*" или "*Конфигурация задач*" – "*MainTask*") в секции переменных обязательно **создать** экземпляр функционального блока, указав переменную с типом *ElsyMA_CE30X.CE30X* и добавить переменные для работы с этим ФБ.

```
PROGRAM PLC PRG
VAR
 FB CE30X
                  : ElsyMA CE30X.CE30X;
 Timer SendTR
                  : TON;
set_ptTR
                  : TIME
                              := T#5S;
            : STRING (255);
RecvTR
            : UDINT
cnt TR
                       := 1:
                              := 0;
err_TR
                  : UDINT
                  : UDINT := 0;
 CntErr_Init
                  : UDINT := 0;
 CntErr_SendTR
 Start_Init
                  : UDINT
                             := 1;
                  : UDINT
 Start_TR
                              := 0;
```

END_VAR

После этого, в программе можно использовать вызов ФБ.

Е.1 Инициализация ФБ

Для "Инициализации ФБ" в программе пользователя код может быть следующий:

```
IF Start Init AND (FB CE30X.CE30X INIT = 0) AND
(FB_CE30X.CE30X_CONTROL = 0) THEN
     Start_Init := 0;
     FB_CE30X.BoudeRate :=5; // По умолчанию
     FB_CE30X.Paritet :=2; // По умолчанию
     FB_CE30X.BitNmb :=7; // По умолчанию
     FB_CE30X.StopBitNmb :=5; // По умолчанию
     CntErr_Init := 0;
                             // Подготовка счетчиков ошибок
     FB_CE30X.CE30X_TA:= set_ptTR; // Тайм-аут
    FB CE30X.CE30X INIT := 1; // Активация инициализации с установленными
параметрами
     cnt_init := cnt_init + 1;
    ELSIF (Start_Init =0) AND (FB_CE30X.CE30X_INIT = 0) THEN// Ожидание
окончания инициализации
           IF FB_CE30X.INIT_ErrCode = 0 THEN
                 .....// Инициализация завершена успешно
           ELSE
                 CntErr_Init := CntErr_Init + 1;
                 err_init := FB_CE30X.INIT_ErrCode; // Код ошибки
                 Start_Init:=1;
            END_IF //IF CntErr_Init = 3 THEN
    END IF
```

Е.2 Пример выполнения одиночной транзакции

Если получение необходимых данных от измерительного устройства укладывается в одну транзакцию, то необходимо обеспечить вызов транзакции в режиме "*Транзакция* с установкой сессии с закрытием после завершения транзакции" (значение "2" в параметре **CE30X_MODE**).

```
IF Start_TR AND (FB_CE30X.CE30X_INIT = 0) AND
(FB_CE30X.CE30X_CONTROL = 0) THEN
Start_TR := 0;
FB_CE30X.CE30X_ID:= '1';
FB_CE30X.CE30X_PASS:= '';
FB_CE30X.CE30X_TR:='$01$52$31$02$4D$4F$44$45$4C$28$29$03$4A$00';
//- .R1.MODEL().J
FB_CE30X.CE30X_TRLN:= INT_TO_BYTE(LEN(FB_CE30X.CE30X_TR));
FB_CE30X.CE30X_TA:= set_ptTR;
FB_CE30X.CE30X_MODE:= 2;
FB_CE30X.CE30X_CONTROL := 1;
END_IF
```

Е.З Пример выполнения группы транзакций с открытием сессии

Для выполнения группы транзакций с открытием сессии в программе пользователя код может быть следующий:

Шаг 1. Выполнение транзакции с открытием сессии

```
IF Start_TR AND (FB_CE30X.CE30X_INIT = 0) AND
(FB_CE30X.CE30X_CONTROL = 0) THEN
Start_TR := 0;
FB_CE30X.CE30X_ID:= '1';
FB_CE30X.CE30X_PASS:= '';
FB_CE30X.CE30X_TR:='$01$52$31$02$4D$4F$44$45$4C$28$29$03$4A$00';
//- .R1.MODEL().J
FB_CE30X.CE30X_TRLN:= INT_TO_BYTE(LEN(FB_CE30X.CE30X_TR));
FB_CE30X.CE30X_TA:= set_ptTR;
FB_CE30X.CE30X_MODE:= 1;
FB_CE30X.CE30X_CONTROL := 1;
END IF
```

В режиме "*Транзакция с установкой сессии без закрытия*" устанавливается сессия и выдается одна транзакция из переменной **CE30X_TR**. После этого можно выдать несколько транзакций в режиме "*Одиночная транзакция без установки сессии*" (значение "**0**" в параметре **CE30X_MODE**).

После выдачи транзакции необходимо дождаться, когда переменная *FB_CE30X.CE30X_CONTROL* станет равной "0", а значение переменной *CE30X_BUSY* ("*Сигнал занятого* ФБ") будет "*FALSE*", что означает завершение выполнения транзакции.

Если переменная *CE30X_ERR* ("Код ошибки выполнения последней транзакции") равна "0", то результат выполнения запроса будет находиться в строковой переменной *CE30X_IN* ("Ответ на транзакцию"), а длина сообщения в переменной *CE30X_INLN* (в ответе могут содержаться непечатные символы).

Коды ошибок приведены в таблице 3.41 настоящего РЭ.

Шаг 2. Продолжение работы в сессии (выполнение одиночной транзакции без закрытия)

Достаточно установки значений для четырёх переменных: CE30X_TR, CE30X_MODE, CONTROL, CE30X_TRLN

FB_CE30X.CE30X_TR:= '\$01\$52\$31\$02\$53\$54\$41\$54\$5F\$28\$29\$03\$74\$00'; // Запрос состояния .R1.STAT_().t FB_CE30X.CE30X_TRLN:= INT_TO_BYTE(LEN(FB_CE30X.CE30X_TR)); FB_CE30X.CE30X_MODE:= 0; FB_CE30X.CE30X_CONTROL := 1;

Так же как и на шаге 1, дождаться завершения выполнения транзакции.

Ответ будет:

.STAT_(0,0).... (02 53 54 41 54 5F 28 30 2C 30 29 0D 0A 03 12)

По завершению можно повторить запрос к счетчику с открытой сессией, присвоив переменной *FB_CE30X.CE30X_TR* новое значение, например, "Запрос состояния батареи":

FB_CE30X.CE30X_TR:= '\$01\$52\$31\$02\$56\$5F\$42\$41\$54\$28\$29\$03\$65\$00' //.R1.V_BAT().e

На этот запрос в переменной *CE30X_IN* будет находиться ответ вида:

.V_BAT(3.7).... (02 56 5F 42 41 54 28 33 2E 37 29 0D 0A 03 0F)

Шаг 3. Закрытие сессии

```
FB_CE30X.CE30X_TR:= '$01$42$30$03$75$00'; // Завершение сессии
// «.B0.u»
FB_CE30X.CE30X_MODE:= 0;
FB_CE30X.CE30X_CONTROL := 1;
```

Так же как и на шаге 1, дождаться завершения выполнения транзакции.

После выполнения шага 3 можно открывать сессию и выполнять транзакции для другого измерительного оборудования в линии.

Е.4. Пример вызова экземпляра ФБ

Для программы на языке **ST**, при объявлении экземпляра ФБ, как указано выше, строка кода вызова должна быть следующая:

FB_CE30X();

Приложение Ж (справочное)

Пример применения функций ФБ М23Х

Для использования функций библиотеки M23XLibrary необходимо в программе пользователя для ПЛК PLC_PRG (PRG) (в ветке "Plc Logic" – "Application" или "Конфигурация задач" – "MainTask") в секции переменных обязательно создать экземпляр функционального блока, указав переменную с типом ElsyMA_M23X.M23X и добавить переменные для работы с этим ФБ.

```
PROGRAM PLC PRG
VAR
 FB M23X
                : ElsyMA M23X.M23X;
 Timer_SendTR : TON;
                           := T#5S:
set_ptTR
                : TIME
RecvTR
           : STRING (255);
           : UDINT
cnt_TR
                    := 1;
CntErr_Init
err_TR
               : UDINT
                           := 0;
               : UDINT := 0;
 CntErr SendTR : UDINT := 0;
 Start Init
               : UDINT
                          := 1;
 Start_TR
                : UDINT
                           := 0;
END VAR
```

После этого, в программе можно использовать вызов ФБ.

Ж.1 Инициализация ФБ

Для "*Инициализации ФБ*" в программе пользователя код может быть следующий:

```
IF Start_Init AND (FB_M23X.M23X_INIT = 0) AND (FB_M23X.M23X_CONTROL =
0) THEN
     Start_Init := 0:
     FB_M23X.BoudeRate :=5; // Скорость 9600 (по умолчанию)
     FB_M23X.Paritet :=0; // Контроль чётности отсутствует (по умолчанию)
     FB_M23X.BitNmb :=8; // Количество бит данных (по умолчанию)
     FB_M23X.StopBitNmb :=1; // Количество стоп-бит (по умолчанию)
     CntErr_Init :=0;
                             // Подготовка счетчиков ошибок инициализации
     FB_M23X.M23X_TA:= set_ptTR; // Тайм-аут
    FB M23X.M23X INIT := 1; // Активация ФБ для инициализации интерфейса RS-
                             // 485 с установленными параметрами
     cnt init := cnt init + 1; // Счётчик попыток инициализации увеличивается
    ELSIF (Start Init =0) AND (FB M23X.M23X INIT = 0) THEN// Ожидание
окончания инициализации
           IF FB M23X.INIT ErrCode = 0 THEN
                 .....// Инициализация завершена успешно
           ELSE
                 CntErr_Init := CntErr_Init + 1;
                 err_init := FB_M23X.INIT_ErrCode; // Код ошибки
                 Start_Init:=1;
           END_IF //IF CntErr_Init = 3 THEN
    END IF
```

Ж.2 Пример выполнения одиночной транзакции

Если получение необходимых данных от измерительного устройства укладывается в одну транзакцию, то необходимо обеспечить вызов транзакции в режиме "*Транзакция* с установкой сессии с закрытием после завершения транзакции" (значение "2" в параметре **M23X_MODE**).

```
IF Start_TR AND (FB_M23X.M23X_INIT = 0) AND (FB_M23X.M23X_CONTROL = 0) THEN
```

```
Start_TR := 0;
FB_M23X.M23X_ID:= '1';
FB_M23X.M23X_PASS:= '';
// Опрос накопленной энергии от начала сброса
FB_M23X.M23X_TR:='$00$05$00$00$10$25$00';
FB_M23X.M23X_TRLN:= INT_TO_BYTE(LEN(FB_M23X.M23X_TR));
FB_M23X.M23X_TA:= set_ptTR;
FB_M23X.M23X_MODE:= 2;
FB_M23X.M23X_CONTROL := 1;
END_IF
```

Ж.З Пример выполнения группы транзакций с открытием сессии

Для выполнения группы транзакций с открытием сессии в программе пользователя код может быть следующий:

Шаг 1. Выполнение транзакции с открытием сессии

В режиме "*Транзакция с установкой сессии без закрытия*" устанавливается сессия и выдается одна транзакция из переменной *M23X_TR*. После этого можно выдать несколько транзакций в режиме "*Одиночная транзакция без установки сессии*" (значение "**0**" в параметре *M23X_MODE*).

После выдачи транзакции необходимо дождаться, когда переменная *FB_M23X.M23X_CONTROL* станет равной "0", а значение переменной *M23X_BUSY* ("*Сигнал занятого* ФБ") будет "*FALSE*", что означает завершение выполнения транзакции.

Если переменная *M23X_ERR* ("Код ошибки выполнения последней транзакции") равна "0", то результат выполнения запроса будет находиться в строковой переменной *M23X_IN* ("Ответ на транзакцию"), а длина сообщения в переменной *M23X_INLN* (в ответе могут содержаться непечатные символы).

Коды ошибок приведены в таблице 3.41 настоящего РЭ.

Шаг 2. Продолжение работы в сессии (выполнение одиночной транзакции без закрытия)

Достаточно установки значений для четырёх переменных:

M23X_TR, M23X_MODE, CONTROL, M23X_TRLN // Опрос накопленной энергии за текущие сутки FB_M23X.M23X_TR:= '\$00\$05\$40\$00\$21\$E5\$00'; FB_M23X.M23X_TRLN:= INT_TO_BYTE(LEN(FB_M23X.M23X_TR)); FB_M23X.M23X_MODE:= 0; FB_M23X.M23X_CONTROL := 1;

Так же как и на шаге 1, дождаться завершения выполнения транзакции.

Ответ будет: \$00\$08\$16\$21\$4F\$9E\$00\$00[\$25\$04]\$00[\$4E\$09]\$00[\$B8\$1F]\$AF\$BA

По завершению можно повторить запрос к счетчику с открытой сессией, присвоив переменной *FB_M23X.M23X_TR* новое значение, например, "Сила тока по фазам":

FB_M23X.M23X_TR:= '\$00\$08\$16\$21\$4F\$9E\$00' // Сила тока по фазам

На этот запрос в переменной *M23X_IN* будет находиться ответ вида: \$00\$08\$16\$21\$4F\$9E\$00\$00[\$25\$04]\$00[\$4E\$09]\$00[\$B8\$1F]\$AF\$BA

Шаг 3. Закрытие сессии

```
FB_M23X.M23X_TR:= '$01$42$30$03$75$00'; // Завершение сессии
// «.B0.u»
FB_M23X.M23X_MODE:= 0;
FB_M23X.M23X_CONTROL := 1;
```

Так же как и на шаге 1, дождаться завершения выполнения транзакции.

После выполнения шага 3 можно открывать сессию и выполнять транзакции для другого измерительного оборудования в линии.

Ж.4 Пример вызова экземпляра ФБ

Для программы на языке **ST**, при объявлении экземпляра ФБ, как указано выше, строка кода вызова должна быть следующая:

FB_M23X();

Приложение 3 (справочное)

Пример применения функций ФБ GSM

Для работы контроллера с применением функций ФБ GSM необходимы следующие объявления переменных:

```
PROGRAM PLC PRG
VAR
 mygsm : ElsyMA_GSM.ELSYGSM;
 cntinit: UDINT;
 cntsms : UDINT;
 cntinsms : UDINT;
 cntat : UDINT;
 recvstr : STRING(255);
 sms1 : STRING(255);
 sms1num : STRING(255);
 temp : UDINT;
 cntsend : BYTE;
 cntread : BYTE:
 cntreset: BYTE;
 cntnoterr : BYTE;
 myatrecvstr : STRING(255);
 isbadreset : BOOL;
 qsm state: BYTE;
 start_readsms: BOOL;
END VAR
```

После этого, в программе можно использовать функции GSM.

Для "Инициализации модуля GSM" в программе пользователя код может быть следующий:

```
(* Инициализация GSM *)
IF mygsm.error = 0 AND mygsm.isbusy = 0 AND cntinit = 0 THEN
mygsm.controlinit := 1;
cntinit := cntinit + 1;
END_IF
(* 2 попытки переинициализации GSM - в случае недоступности GSM *)
IF mygsm.error = -3 AND mygsm.isbusy = 0 AND cntinit < 3 THEN
mygsm.controlinit:= 1;
cntinit := cntinit + 1;
END_IF
```

В программе пользователя для передачи АТ-команды запроса баланса код может быть следующий:

```
(* Передача АТ команды *)
IF mygsm.error = 0 AND mygsm.isbusy = 0 AND mygsm.controlreset = 0 AND
cntat = 0
THEN (* Подготовка at команды *)
mygsm.cmdat := 'AT+CUSD=1,"#100#"$R$R$n';
mygsm.ptat := T#5S;
(* Paspeшaeм передать at команду 1 pas *)
mygsm.controlat := 1;
cntat := cntat + 1;
END_IF
(* Попытка сброса GSM - в случае неудачных попыток передачи АТ команды
*)
IF mygsm.error = -4 AND mygsm.isbusy = 0 AND cntat = 3 AND cntreset = 0
THEN
mygsm.controlreset:= 1;
```

```
cntat := 0;
cntreset := 1;
END_IF
(* Приём ответа на первую АТ команду *)
IF mygsm.error =0 AND cntat = 1 AND mygsm.isbusy = 0 THEN
myatrecvstr := mygsm.recvat;
cntat := 3;
END_IF
```

В программе пользователя код для применения функции "Отправка текстового сообщения (SMS)" может быть следующий:

```
(* Передача SMS *)
    IF mygsm.error = 0 AND mygsm.isbusy = 0 AND cntsms = 0 THEN (*
Инициализация данных для передачи SMS *)
     mygsm.numbersms := '8961XXXXXX';
     mygsm.textsms := 'test message';
     (* Разрешение передачи SMS 1 раз *)
     mygsm.controlsendsms := 1;
     cntsms := cntsms + 1;
    END IF
    IF mygsm.error = -5 AND mygsm.isbusy = 0 AND cntsms < 3 THEN (*Возникли
ошибки по тайм-ауту GSM - 2 попытки передачи SMS *)
     mygsm.numbersms := '8961XXXXXX';
     mygsm.textsms := 'test message';
     (* Разрешение передачи SMS 1 раз *)
     mygsm.controlsendsms := 1;
     cntsms := cntsms + 1;
    END IF
```

В программе пользователя код для применения функции "Приём текстового сообщения (SMS)" может быть следующий:

```
(* Запуск проверки принятых сообщений, если ФБ GSM свободен от
выполнения других функций *)
    IF mygsm.error = 0 AND mygsm.isbusy=0 AND start_readsms THEN
     mygsm.controlreadsms := 1;
     cntread := 0;
    END IF
    (* Проверка готового SMS в буфере приёма*)
    IF mygsm.error = 0 AND mygsm.controlreadsms = 0 AND mygsm.isbusy=0 and
mygsm.isreadysms THEN
     IF mygsm.isbadreadsms = FALSE THEN
           sms1num := mygsm.recvnumber;
           sms1:= mygsm.recvsms;
     END IF
    END IF
    IF mygsm.error = -6 AND mygsm.controlreadsms = 0 AND cntread < 2 and
mygsm.isbusy=0 THEN
     (* Возникли ошибки по тайм-ауту GSM, выполнить 2 попытки запроса
входящего SMS *)
     mygsm.controlreadsms = 1;
     cntread := cntread + 1;
    END_IF
```

Для выполнения функции "*Annapamный рестарт модуля GSM*", например, в случае возникновения ошибки с кодом "=-3" при инициализации модуля, текст программы может быть следующий:

```
(* Попытка сброса GSM - в случае неудачных попыток инициализации *)
IF mygsm.error = -3 AND mygsm.isbusy = 0 AND cntinit = 3 AND cntreset = 0
THEN
mygsm.controlreset:= 1; // Активация аппаратного рестарта модуля GSM
cntinit := 0;
cntreset := 1;
END_IF
```

Приложение И (справочное)

Перечень изменений программного обеспечения и РЭ на контроллер Элсима

таолица и.т – перечень произведенных изменении в программном обеспечении и г э	Таблица И.1 – Пере	ечень произведенных	к изменений в прог	раммном обеспечении и РЭ
--	--------------------	---------------------	--------------------	--------------------------

Дата изменения	Номе	ра версий	Описание изменений				
	Версия системн. ПО 03.02 (сборка 6448)						
13.04.16	Версия пакета поддержки (TSP)	03.02 (сборка 6451)	 Поддержка протокола ModBus TCP Slave. Поддержка ModBus RTU Master. Поддержка GSM в режиме приема передачи SMS. 4 Поддержка синхронизации времени через NTP. 5 Сервисные функции по заданию IP, Mask, времени средствами CoDeSys 				
	Bepсия CoDeSys	3.5.6.1					
	Версия сопроцессора	0.0.0.9					
	Версия РЭ	02					
17.06.16	Версия системн. ПО	03.03 (сборка 6949)	 Добавлена поддержка модуля УВВ ЭЛСИМА-Д01. Добавлена поддержка модуля УВВ ЭЛСИМА-А01. Добавлена поддержка ModBus RTU Slave. Добавлена поддержка счетчиков эл. энергии ПСЧ и СЭТ. 				
	Версия пакета поддержки (TSP)	03.03 (сборка 6943)	5 Добавлена поддержка счетчиков эл. энергии CE30х. 6 Добавлена возможность определения обновления сигнала в задаче пользователя без				
	Bepсия CoDeSys	3.5.6.1	изменения значения сигнала, возможность формирования передачи сигналов без изменения значения (добавлены ФБ MapIn, MapOut).				
	Версия сопроцессора	0.0.1.0	 7 Внесены изменения в работе с устроиствами на шине 12С для уменьшения джитера системы. 8 Внесены изменения в параметры слота RS485 (добавлены параметры преамбула, постомбула) 				
	Версия РЭ	03	10 Исправлена ошибка в ФБ ElsyGSM при удалении всех SMS сообщений. 10 Исправлена ошибка в плагине конфигурирования модуля ModBus Master				
21.06.16	Версия системн. ПО	03.03 (сборка 7928)	Исправлена ошибка по установке дискретного выхода DOUT.4 по старту контроллера				

Дата изменения	Номе	ра версий	Описание изменений
	Версия пакета поддержки (TSP)	03.03 (сборка 6943)	
	Bepcия CoDeSys	3.5.6.1	
	Версия сопроцессора	0.0.1.1	
	Версия РЭ	03	
10.01.17	Версия системн. ПО	03.04 (сборка 7028)	Расширение функциональности: 1 Добавлена поддержка модуля УВВ Элсима-DA01. 2 Добавлен модуль поддержки протокола IEC104 в режиме <i>Master</i> . 3 Добавлен модуль поддержки протокола IEC104 в режиме <i>Slave</i> .
	Версия пакета поддержки (TSP)	03.04 (сборка 7082)	 4 Добавлен модуль поддержки протокола ModBus в режиме <i>Master</i>. 5 Добавлена библиотека для работы со счетчиком Меркурий. 6 Добавлен коннектор GPRS для поддеркжки GPRS-режима (в тестовом режиме). 7 Добавлена поддержка счетчиков эл. энергии Меркурий 230/233/234
	Версия CoDeSys	3.5.6.1	Исправление ошибок: 1 Bug #411, #410 Добавлена сортировка сигналов для устранения замечания (неправильное маппирование сигналов при одновременном соотнесении автоматической и существующей переменной)
	Версия сопроцессора	0.0.1.0	2 bug #464 ФБ MapIn и ФБ MapOut – неправильное связывание входа или выхода. 3 bug #465 Канал Modbus RTU Slave – исключение при холодном сбросе на определенной конфигурации. 4 bug #467 Канал Modbus RTU Master – исключение при повториой загрузке проекта без
	Версия РЭ	07	выходных сигналов.
	Версия РП на IEC104	03	5 Исправлена ошибка в определении обрыва связи с УВВ. 6 Элсима-DA01 – исправлена ошибка обработки карты маппирования сигналов (версия
	УВВ ЭЛСИМА-А01	0.0.0.9	 0003). 7 Элсима-А01 – исправлена ошибка обработки карты маппирования сигналов (версия 0004) 8 Элсима-М01, плата ЕМАГ – начиная с версии 13 изменена инициализация SPI для ЦАП (применять данную версию ПО можно для доработаных плат). (Версии 3 и 4, и

Таблица И.1 – Перечень произведенных изменений в программном обеспечении и РЭ

Таблина	И.1 –	Перечень	произвеленных	изменений в	прог	раммном	обеспеч	ении и Р	РЭ

Дата изменения	Номе	ра версий	Описание изменений
	УВВ ЭЛСИМА-D01	0.1.0.5	последующих версий). Корректировка документации: 1 Скорректирована документация на работу с SMS, так как в режиме GPRS всегда возникает ошибка "-4".
	УВВ ЭЛСИМА-DA01	0.0.0.7	 2 Скорректирована документация на работу с модулями Modbus TCP Master, Modbus TCP Slave, Modbus RTU Master, Modbus RTU Slave, для каждого модуля добавлен раздел «Рекомендации по работе с модулем» 3 Добавлена формула приведения измерений счетчиков СЭТ, ПСЧ.

Контактная информация

По всем вопросам, связанным с эксплуатацией контроллера, обращаться в сервисный центр АО "ЭлеСи":

тел.: +7 (3822) 49-94-94

E-mail: service@elesy.ru

Сервисный центр располагается в г. Томске (часовой пояс +4 МСК).

При обращении просим сообщать следующие данные:

- полное наименование изделия (указано на изделии или в паспорте);

- проект *CoDeSys*, в котором возникает проблема;

– версия установленного на компьютере пакета *EleSy ELSYMA TSP (Target Support Package)*;

– подробное описание проблемы (постарайтесь наиболее полно пояснить суть проблемы и обстоятельства или условия, которые привели к ней).
Лист регистрации изменений								
Номера листов (страниц)								
Изм	изменен- ных	заменен- ных	новых	аннули- рован- ных	Всего листов (страниц) в докумен.	№ документа	Подп.	Дата
1		1-118	119-147		147	138-16		21.06.16
2		Bce			147	160-16		08.08.16
3		Bce			147	185-16		19.08.16
4		Bce			149	253-16		26.12.16
5		Bce			182	05-17		17.01.17